Home » Taylor Polynomials

Tag: Taylor Polynomials

Prove some properties of the function e-1/x2

Consider the function

    \[ f(x) = e^{-\frac{1}{x^2}} \qquad \text{when} \quad x \neq 0 \]

and f(0) = 0.

  1. Prove that for every positive number m we have

        \[ \lim_{x \to 0} \frac{f(x)}{x^m} = 0. \]

  2. Prove that if x \neq 0 then

        \[ f^{(n)}(x) = f(x) P \left( \frac{1}{x} \right) \]

    where P(t) is a polynomial in t.

  3. Prove that

        \[ f^{(n)}(0) = 0 \qquad \text{for all } n \geq 1. \]


  1. Proof. (A specific case of this general theorem is actually the first problem of this section, here. Maybe it’s worth taking a look since this proof is just generalizing that particular case.) We make the substitution t = \frac{1}{x^2}, so that t \to +\infty as x \to 0 and we have

        \begin{align*}  \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^m} &= \lim_{t \to +\infty} \frac{t^{\frac{m}{2}}}{e^t} \\[9pt]  &= 0 \end{align*}

    by Theorem 7.11 (page 301 of Apostol) since m > 0 implies \frac{m}{2} > 0 as well. \qquad \blacksquare

  2. Proof. The proof is by induction on n. In the case n = 1 we have

        \begin{align*}  f'(x) &= \left( \frac{2}{x^3} \right) e^{-\frac{1}{x^2}} \\[9pt]  &= 2 \left( \frac{1}{x} \right)^3 e^{-\frac{1}{x^2}} \\[9pt]  &= P \left(\frac{1}{x} \right) e^{-\frac{1}{x^2}}. \end{align*}

    So, indeed the formula is valid in the case n = 1. Assume then that the formula holds for some positive integer k. We want to show this implies the formula holds for the case k + 1.

        \begin{align*}  f^{(k+1)}(x) = \left( f^{(k)}(x) \right)' &= \left( P\left( \frac{1}{x} \right) e^{-\frac{1}{x^2}} \right)' \\[9pt]  &= P' \left( \frac{1}{x} \right) e^{-\frac{1}{x^2}} + \frac{2}{x^3} P \left( \frac{1}{x} \right) e^{-\frac{1}{x^2}} \\[9pt]  &= \left( P' \left( \frac{1}{x} \right) + \frac{2}{x^3} P \left( \frac{1}{x} \right) \right)e^{-\frac{1}{x^2}}. \end{align*}

    But then the leading term

        \[ P' \left( \frac{1}{x} \right) + 2 \left( \frac{1}{x} \right)^3 P \left( \frac{1}{x} \right) \]

    is still a polynomial in \frac{1}{x} since the derivative of a polynomial in \frac{1}{x} is still a polynomial in \frac{1}{x}, and so is the sum of two polynomials in \frac{1}{x}. Therefore, we have that the formula holds for the case k+1; hence, it holds for all positive integers n. \qquad \blacksquare

  3. Proof. The proof is by induction on n. If n = 1 then we use the limit definition of the derivative to compute the derivative at 0,

        \begin{align*}  f'(0) &= \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} \\[9pt]  &= \lim_{h \to 0} \frac{f(h)}{h} &(f(0) = 0 \text{ by def of } f)\\[9pt]  &= 0 & \text{by part (a)}. \end{align*}

    So, indeed f'(0) = 0 and the statement is true for the case n = 1. Assume then that f^{(k)} (0) = 0 for some positive integer k. Then, we use the limit definition of the derivative again to compute the derivative f^{(k+1)}(0),

        \begin{align*}  f^{(k+1)}(0) &= \lim_{h \to 0} \frac{f^{(k)}(0+h) - f^{(k)}(0)}{h} \\[9pt]  &= \lim_{h \to 0} \frac{f^{(k)}(h)}{h} &(f^{(k)}(0) = 0 \text{ by Ind. Hyp.}) \\[9pt]  &= \lim_{h \to 0} f(h) P \left( \frac{1}{h} \right) \cdot \frac{1}{h} &(\text{part (b)}) \\[9pt]  &= \lim_{h \to 0} P \left( \frac{1}{h} \right) e^{-\frac{1}{h^2}}. \end{align*}

    This follow since \frac{1}{h} \cdot P \left( \frac{1}{h} \right) is still a polynomial in \frac{1}{h}, and by the definition of f(x) for x \neq 0. But then, by part (a) we know

        \[ \lim_{h \to 0} \frac{f(h)}{h^m} = 0 \qquad \text{for all } m \in \mathbb{Z}^+. \]

    Therefore,

        \[ f^{(k+1)}(0) = \lim_{h \to 0} P \left( \frac{1}{h} \right) e^{-\frac{1}{h^2}} = 0. \]

    Thus, the formula holds for the case k+1, and hence, for all positive integers n. \qquad \blacksquare

Compute derivatives of a function given a limit equation that it satisfies

Consider a function f(x) that satisfies the limit relation

    \[ \lim_{x \to 0} \left( 1 + x + \frac{f(x)}{x} \right)^{\frac{1}{x}} = e^3, \]

and has a continuous third derivative everywhere. Determine the values

    \[ f(0), \quad f'(0), \quad f''(0), \quad \text{and} \quad \lim_{x \to 0} \left( 1 + \frac{f(x)}{x} \right)^{\frac{1}{x}}. \]


We do some simplification to the expression first.

    \begin{align*}  &&\lim_{x \to 0} \left( 1 + x + \frac{f(x)}{x} \right)^{\frac{1}{x}} &= e^3 \\[9pt]  \implies && \lim_{x \to 0} e^{\frac{1}{x} \log \left( 1 + x + \frac{f(x)}{x} \right)} &= e^3 \\[9pt]  \implies && \exp \left( \lim_{x \to 0} \left( \frac{1}{x} \log \left( 1 +x + \frac{f(x)}{x} \right) \right) &= e^3 \\[9pt]   \implies && \lim_{x \to 0} \left( \frac{1}{x} \log \left( 1 + x + \frac{f(x)}{x} \right) \right) &= 3. \end{align*}

Now, we apply the hint (that if \lim_{x \to 0} g(x) = A then g(x) = A + o(1)),

    \begin{align*}   &&\frac{1}{x} \log \left( 1 + x + \frac{f(x)}{x} \right) &= 3 + o(1) \\[9pt]  \implies && \log \left( 1 + x + \frac{f(x)}{x} \right) &= 3x + o(x) \\[9pt]  \implies && 1 + x + \frac{f(x)}{x} &= e^{3x + o(x)} \\[9pt]  \implies && x + x^2 + f(x) &= xe^{3x}e^{o(x)} \\[9pt]  \implies && f(x) &= - x - x^2 + xe^{3x}e^{o(x)}. \end{align*}

So as x \to 0 we have

    \[ f(x) = -x - x^2 + x\left( 1 + 3x + o(x) \right) = 2x^2 + o(x^2). \]

But then since f has three derivatives at 0 we know its Taylor expansion at 0 is unique and is given by (Theorem 7.1, page 274 of Apostol)

    \[ f(x) = f(0) + f'(0)x + \frac{f''(0)}{2} x^2 + o(x^2). \]

Hence, equating the coefficients of like powers of x we have

    \[ f(0) = 0, \quad f'(0) = 0, \quad f''(0) = 4. \]

Next, to compute the limit

    \[ \lim_{x \to 0} \left( 1 + \frac{f(x)}{x} \right)^{\frac{1}{x}} \]

we write

    \begin{align*}  f(x) = 2x^2 + o(x^2) && \implies && \frac{f(x)}{x} &= 2x + o(x) \\[9pt]  && \implies && 1 + \frac{f(x)}{x} &= 1 + 2x + o(x) \\[9pt]  && \implies && \log \left(1 + \frac{f(x)}{x} \right) &= \log (1+2x+o(x)). \end{align*}

Then, using the Taylor expansion of \log(1+x) (page 287 of Apostol) we know as x \to 0 we have

    \[ \log (1+2x+o(x)) = 2x+o(x) + o(x) = 2x + o(x). \]

Therefore we have

    \begin{align*}   \log \left( 1 + \frac{f(x)}{x} \right) = 2x + o(x) && \implies && 1 + \frac{f(x)}{x} &= e^{2x+o(x)} \\[9pt]  && \implies && \left( 1 + \frac{f(x)}{x} \right)^{\frac{1}{x}} &= e^{2 + o(1)} \\[9pt]  && \implies && \lim_{x \to 0} \left( 1 + \frac{f(x)}{x} \right)^{\frac{1}{x}} &= e^2.  \end{align*}

Find the limit as x goes to 0 of (arcsin x / x)1/x2

Evaluate the limit.

    \[ \lim_{x \to 0} \left( \frac{\arcsin x}{x} \right)^{\frac{1}{x}}. \]


First, we rewrite the expression using the definition of the exponential:

    \[ \left( \frac{\arcsin x}{x} \right)^{\frac{1}{x}} = e^{\frac{1}{x^2} \log \left(\frac{\arcsin x}{x} \right)}. \]

Next, we need to get a series expansion for \arcsin x as x \to 0. The most straightforward way is to take the first few derivatives (we’ll only need the x^3 term).

    \begin{align*}  f(x) &= \arcsin x & \implies && f(0) &= 0 \\[9pt]  f'(x) &= \frac{1}{\sqrt{1-x^2}} & \implies && f'(0) &= 1 \\[9pt]  f''(x) &= \frac{-x}{(1-x^2)^{\frac{3}{2}}} & \implies && f''(0) &= 0 \\[9pt]  f'''(x) &= \frac{1+2x^2}{(1-x^2)^{\frac{5}{2}}} & \implies && f'''(0) &= 1. \end{align*}

Therefore, we have as x \to 0

    \[ \arcsin x = x + \frac{x^3}{6} + o(x^4). \]

Hence, as x \to 0

    \[ \frac{\arcsin x}{x} = 1 + \frac{x^2}{6} + o(x^3). \]

Since this is going to 1 as x \to 0 we may apply this exercise (Section 7.11, Exercise #4) to conclude

    \begin{align*}   \log \left( \frac{\arcsin x}{x} \right) &= \left( \frac{\arcsin x}{x} - 1\right) - \frac{1}{2} \left( \frac{\arcsin x}{x} - 1 \right)^2 + o \left( \left( \frac{\arcsin x}{x} - 1 \right)^2 \right) \\[9pt]  &= \left( \frac{x^2}{6} + o(x^3) \right) - \frac{1}{2} \left( \frac{x^2}{6} + o(x^3) \right)^2 + o \left( \left( \frac{x^2}{6} + o(x^3) \right)^2 \right) \\[9pt]  &= \frac{x^2}{6} + o (x^3). \end{align*}

Now, we have the expansion as x \to 0

    \[ \frac{1}{x^2}\log \left( \frac{\arcsin x}{x} \right) = \frac{1}{6} + o (x). \]

Therefore,

    \begin{align*}  \lim_{x \to 0} \left( \frac{\arcsin x}{x} \right)^{\frac{1}{x}} &= \lim_{x \to 0} e^{ \frac{1}{x^2} \log \left( \frac{\arcsin x}{x} \right)} \\[9pt]   &= e^{\frac{1}{6}} \lim_{x \to 0} e^{o(x)} \\  &= e^{\frac{1}{6}}. \end{align*}

Find the limit as x goes to 0 of (x + e2x)1/x

Evaluate the limit.

    \[ \lim_{x \to 0} \left( x + e^{2x} \right)^{\frac{1}{x}}. \]


From the definition of the exponential we have

    \[ \left( x + e^{2x} \right)^{\frac{1}{x}} = e^{ \frac{1}{x} \log \left( x + e^{2x} \right)}. \]

So, first we use the expansion of e^x as x \to 0 (page 287 of Apostol) to write

    \[ e^{2x} = 1 + 2x + o(x) \qquad \text{as} \quad x \to 0. \]

Therefore, as x \to 0 we have

    \[ \log (x + e^{2x}) = \log (x + 1  + 2x + o(x)) = \log (1 + 3x + o(x)). \]

Now, since 3x + o(x) \to 0 as x \to 0 we can use the expansion (again, page 287) of \log (1+x) as x \to 0 to write

    \[ \log (1 + 3x + o(x)) = 3x+o(x) + o(3x+o(x)) = 3x + o(x) \qquad \text{as} \quad x \to 0. \]

Therefore, as x \to 0 we have

    \[ \frac{1}{x} \log (x+e^{2x}) = \frac{1}{x}(3x + o(x)) = 3 + \frac{o(x)}{x}. \]

So, getting back to the expression we started with,

    \[ \lim_{x \to 0} \left( x + e^{2x} \right)^{\frac{1}{x}} = \lim_{x \to 0} e^{3 + \frac{o(x)}{x}} = e^3 \lim_{x \to 0} e^{\frac{o(x)}{x}}. \]

But, as in the previous exercise (Section 7.11, Exercise #23) we know \lim_{x \to 0} e^{\frac{o(x)}{x}} = 1. Hence,

    \[ \lim_{x \to 0} \left( x + e^{2x} \right)^{\frac{1}{x}} = e^3. \]

Find the limit as x goes to 1 of x1 / (1-x)

Evaluate the limit.

    \[ \lim_{x \to 1} x^{\frac{1}{1-x}}. \]


First, we write

    \[ x^{\frac{1}{1-x}} = e^{\frac{1}{1-x} \cdot \log x}. \]

From this exercise (Section 7.11, Exercise #4) we know that as x \to we have

    \[ \log x = (x-1) + o((x-1)) \]

Therefore, as x \to 1,

    \[ \frac{\log x}{1-x} = -1 + \frac{o(x-1)}{x-1}. \]

So, we then have

    \begin{align*}  \lim_{x \to 1} x^{\frac{1}{1-x}} &= \lim_{x \to 1}e^{\frac{\log x}{1-x}} \\[9pt]  &= \lim_{x \to 1} e^{-1 + \frac{o(x-1)}{x-1}} \\[9pt]   &= \lim_{x \to 1} e^{-1} \cdot e^{\frac{o(x-1)}{x-1}} \\[9pt]  &= \frac{1}{e} \lim_{x \to 1} e^{\frac{o(x-1)}{x-1}}. \end{align*}

(Here we could say that since the exponential is a continuous function we can bring the limit inside and so this becomes e^0 = 1. I’m not sure we know we can pass limits through continuous functions like that, so we continue on with expanding the exponential as in previous exercises.)
Since \frac{o(x-1)}{x-1} \to 0 as x \to 1 we take the expansion of e^x as x \to 0,

    \begin{align*}  \lim_{x \to 1} e^{\frac{o(x-1)}{x-1}} &= \lim_{x \to 1} \left( 1 + \frac{o(x-1)}{x-1} + o \left( \frac{o(x-1)}{x-1} \right)\right) \\[9pt]  &= 1. \end{align*}

Therefore,

    \[ \lim_{x \to 1} x^{\frac{1}{1-x}} = \frac{1}{e} \lim_{x \to 1} e^{\frac{o(x-1)}{x-1}} = \frac{1}{e}. \]