Home » Series » Page 2

Tag: Series

Prove an integral formula for ∑ (sin (nx)) / n2

Prove that the series

    \[ \sum_{n=1}^{\infty} \frac{\sin (nx)}{n^2} \]

converges for all x \in \mathbb{R} and let f(x) denote the value of this sum for each x. Prove that f(x) is continuous for x \in [0, \pi] and prove that

    \[ \int_0^{\pi} f(x) \, dx = 2 \sum_{n=1}^{\infty} \frac{1}{(2n-1)^3}. \]


Proof. First, the series converges for all real x by the comparison test since

    \[ |\sin (nx)| \leq 1 \quad \implies \quad \left|\frac{\sin (nx)}{n^2}\right| \leq \frac{1}{n^2} \]

for all n. Therefore, the convergence of \sum \frac{1}{n^2} implies the convergence of \sum \frac{\sin (nx)}{n^2}. Furthermore, this convergence is uniform by the Weierstrass M-test with M_n given by \frac{1}{n^2}, and again \sum \frac{1}{n^2} converges. Thus, by Theorem 11.2 (page 425 of Apostol),

    \[ f(x) = \sum_{n=1}^{\infty} \frac{\sin (nx)}{n^2} \]

is continuous on the interval [0, \pi]. Therefore, we may apply Theorem 11.4 (page 426 of Apostol):

    \begin{align*}  && \sum_{k=1}^{\infty} \int_0^{\pi} \frac{\sin (kt)}{k^2} \, dt &= \int_0^{\pi} \sum_{k=1}^{\infty} \frac{ \sin (kt)}{t^2} \, dt \\[9pt]  \implies && \sum_{k=1}^{\infty} \left( \frac{-\cos (kt)}{k^3} \Bigr \rvert_0^{\pi} \right) &= \int_0^{\pi} f(x) \, dx \\[9pt]  \implies && \int_0^{\pi} f(x) \, dx &= 2 \sum_{n=1}^{\infty} \frac{1}{(2n-1)^3} \end{align*}

since \cos 0 - \cos (k \pi) = 0 if k = 2n and equals 2 if k = 2n-1. \qquad \blacksquare

Prove that the improper integral ∫ f(x) dx and ∑ f(n) both converge or both diverge

  1. Assume that f is a monotonically decreasing function for all x \geq 1 and that

        \[ \lim_{x \to +\infty} f(x) = 0. \]

    Prove that the improper integral and the series

        \[ \int_1^{\infty} f(x)  \, dx \qquad \text{and} \qquad \sum_{n=1}^{\infty} f(n) \]

    both converge or both diverge.

  2. Give a counterexample to the theorem in part (a) in the case that f is not monotonic, i.e., find a non-monotonic function f such that \sum f(n) converges but \int_1^{\infty} f(x) \, dx diverges.

    Incomplete.

Prove relationships between a given series

Let \{ a_n \} be a sequence of positive terms.

  1. Prove or give a counterexample: if \sum_{n=1}^{\infty} a_n diverges then \sum_{n=1}^{\infty} a_n^2 also diverges.
  2. Prove or give a counterexample: if \sum_{n=1}^{\infty} a_n^2 converges then \sum_{n=1}^{\infty} \frac{a_n}{n} also converges.

  1. Counterexample. Let a_n = \frac{1}{n}. Then

        \[ \sum_{n=1}^{\infty} \frac{1}{n} \]

    diverges. Furthermore, a_n^2 = \frac{1}{n^2} and

        \[ \sum_{n=1}^{\infty} \frac{1}{n^2} \]

    converges.

  2. Proof. We know from a previous exercise (Section 10.20, Exercise #51) we know

        \[ \sum a_n \quad \text{converges} \quad \implies \quad \sum \sqrt{a_n}n^{-p} \quad \text{converges} \]

    for p > \frac{1}{2}. So, for this case define b_n = a_n^2. Then \sum b_n = \sum a_n^2 converges by hypothesis. Furthermore, (since a_n > 0 so \sqrt{a_n^2} = a_n),

        \[ \sum \sqrt{b_n} n^{-1} = \sum \frac{a_n}{n}. \]

    Since this is the case p = 1, we have proved the statement. \qquad \blacksquare