Home » Partitions

Tag: Partitions

Prove an inequality relating sums and integrals

Prove that

    \[ \sum_{k=1}^{n-1} f(k) \leq \int_1^n f(x) \, dx \leq \sum_{k=2}^n f(k) \]

where f is a nonnegative, increasing function defined for all x \geq 1.

Use this to deduce the inequalities

    \[ e n^n e^{-n} < n! < e n^{n+1} e^{-n} \]

by taking f(x) = \log x.


Proof. Since f(x) is increasing we know f([x]) \leq f(x) \leq f([x+1]) (where [x] denotes the greatest integer less than or equal to x) for all x \geq 1. Define step functions s and g by

    \[ s(x) = f([x]), \qquad t(x) = f([x+1]). \]

Then s and t are constant on the open subintervals of the partition

    \[ P = \{ 0,1,2, \ldots, n \}. \]

So,

    \begin{align*}  \int_1^n s(x) \, dx = \sum_{k=1}^{n-1} s_k (x_k - x_{k-1}) = \sum_{k=1}^{n-1} f(k) \\[9pt]  \int_1^n t(x) \, dx = \sum_{k=1}^{n-1} t_k (x_k - x_{k-1}) = \sum_{k=1}^{n-1} f(k+1) = \sum_{k=2}^n f(k). \end{align*}

Since f is integrable we must have

    \[ \int_1^n s(x) \, dx \leq \int_1^n f(x) \, dx \leq \int_1^n t(x) \, dx \]

for every pair of step functions s \leq f \leq t. Hence,

    \[ \sum_{k=1}^{n-1} f(k) \leq \int_1^n f(x) \, dx \leq \sum_{k=2}^n f(k). \qquad \blacksquare \]

Next, if we take f(x) = \log x (which is nonnegative and increasing on x \geq 1) we have

    \begin{align*}  &&\sum_{k=1}^{n-1} \log k \leq \int_1^n \log x \, dx \leq \sum_{k=2}^n \log k \\[9pt]  \implies && \log(n-1)! \leq n \log n - n + 1 \leq \log n! \\[9pt]  \implies && (n-1)! \leq e n^n e^{-n} \leq n!. \end{align*}

From this we then get two inequalities

    \[ n! \leq en^{n+1} e^{-n} \quad \text{and} \quad e n^n e^{-n} \leq n!. \]

Therefore,

    \[ en^n e^{-n} \leq n! \leq e n^{n+1} e^{-n}. \]

Prove some statements about integrals of bounded monotonic increasing functions

Consider a bounded, monotonic, real-valued function f on the interval [0,1]. The define sequences

    \[ s_n = \frac{1}{n} \sum_{k=0}^{n-1} f \left( \frac{n}{k} \right), \qquad t_n = \frac{1}{n} \sum_{k=1}^n f \left( \frac{k}{n} \right). \]

  1. Prove that

        \[ s_n \leq \int_0^1 f(x) \, dx \leq t_n \]

    and that

        \[ 0 \leq \int_0^1 f(x) \,dx - s_n \leq \frac{f(1) - f(0)}{n}. \]

  2. Prove that the two sequences \{ s_n \} and \{ t_n \} converge to \int_0^1 f(x) \, dx.
  3. State and prove a generalization of the above to interval [a,b].

  1. Proof.First, we define two step functions,

        \[ s(x) = f \left( \frac{[nx]}{n} \right), \qquad t(x) = f \left( \frac{[nx+1]}{n} \right) \]

    where [x] denotes the greatest integer less than or equal to x. Then we define a partition of [0,1],

        \[ P = \left\{ 0, \frac{1}{n}, \frac{2}{n}, \ldots, 1 \right\}. \]

    For any x_{k_1} \leq x < x_k we have

        \[ s(x) = f \left( \frac{k-1}{n} \right), \qquad t(x) = f \left( \frac{k}{n} \right). \]

    So, s(x) and t(x) are constant on the open subintervals of the partition P.
    Since f(x) is monotonically increasing and s(x) \leq f(x) \leq t(x) for all x (by the definition of s and t) we have

        \begin{align*}  &&\int_0^1 s(x) \, dx \leq \int_0^1 f(x) \, dx \leq \int_0^1 t(x) \, dx \\[9pt]  \implies && \sum_{k=0}^{n-1} s_k (x_k - x_{k-1} \leq \int_0^1 f(x) \, dx \leq \sum_{k=0}^{n-1} t_k (x_k - x_{k-1}) && (\text{Def step function integral}) \\[9pt]  \implies && \frac{1}{n} \sum_{k=0}^{n-1} f \left( \frac{k}{n} \right) \leq \int_0^1 f(x) \, dx \leq \frac{1}{n} \sum_{k=0}^{n-1} f \left( \frac{k+1}{n} \right) &&(x_k - x_{k-1} = \frac{1}{n} \forall k) \\[9pt]  \implies && \fract{1}{n} \sum_{k=0}^{n-1} f \left( \frac{k}{n} \right) \leq \int_0^1 f(x) \, dx \leq \frac{1}{n} \sum_{k=1}^nf \left( \frac{k}{n} \right) \\[9pt]  \implies && s_n \leq \int_0^1 f(x) \, dx \leq t_n && \text{for all } n \\[9pt]  \implies && 0 \leq \int_0^1 f(x) \, dx - s_n \leq t_n - s_n \\[9pt]  \implies && 0 \leq \int_0^1 f(x) \, dx - s_n \leq \frac{f(1) - f(0)}{n}. \qquad \blacksquare \end{align*}

  2. Proof. From part (a) we have

        \[ 0 \leq \int_0^1 f(x) \, dx - s_n \leq \frac{f(1) - f(0)}{n} \quad \implies \quad \lim_{n \to \infty} \left( \int_0^1 f(x) \, dx - s_n \right)= 0 \]

    since \lim_{n \to \infty} \frac{f(1)- f(0)}{n} = 0. Since \int_0^1 f(x) \, dx does not depend on n we have

        \[ \int_0^1 f(x) \, dx  - \lim_{n \to \infty} s_n = 0 \quad \implies \quad \lim_{n \to \infty} s_n = \int_0^1 f(x) \, dx. \]

    Therefore,

        \begin{align*}   && s_n \leq \int_0^1 f(x) \, dx \leq t_n \\[9pt]  \implies && s_n - t_n \leq \int_0^1 f(x) \, dx - t_n \leq 0 \\[9pt]  \implies && \frac{f(0)-f(1)}{n} \leq \int_0^1 f(x) \, dx - t_n \leq 0 \\[9pt]  \implies && \lim_{n \to \infty} \left( \int_0^1 f(x) \, dx - t_n \right) = 0 \\[9pt]  \implies && \lim_{n \to \infty} t_n = \int_0^1 f(x) \, dx. \qquad \blacksquare \end{align*}

  3. Claim: If f is a real-valued function that is monotonic increasing and bounded on the interval [a,b], then

        \[ \lim_{n \to \infty} s_n = \int_a^b f(x) \, dx, \qquad \text{and} \qquad \lim_{n \to \infty} t_n = \int_a^b f(x) \, dx \]

    for s_n and t_n defined as follows:

        \[ s_n = \frac{b-a}{n} \cdot sum_{k=0}^{n-1} f \left( a + k \frac{b-a}{n} \right), \qquad t_n = \frac{b-a}{n} \cdot \sum_{k=1}^n f \left( a + k \frac{b-a}{n} \right). \]

    Proof. Let

        \[ P = \left\{ a, a + \frac{b-a}{n}, a + \frac{2(b-a)}{n}, \ldots, a + \frac{n(b-a)}{n} = b \right\}  \]

    be a partition of the interval [a,b]. Then, define step functions s(x) and t(x) with s(x) = f(x_{k-1}) and t(x) = f(x_k) for x_{k-1} \leq x < x_k. By these definitions we have s(x) \leq f(x) \leq t(x) for all x \in [a,b] (since f is monotonic increasing). Since f is bounded and monotonic increasing it is integrable, and

        \begin{align*}  && \int_a^b s(x) \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b t(x) \, dx \\[9pt]  \implies && \sum_{k=1}^n s_k (x_k - x_{k-1}) \leq \int_a^b f(x) \, dx \leq \sum_{k=1}^n t_k (x_k - x_{k-1}) \\[9pt]  \implies && \sum_{k=1}^n s_k \left( \frac{b-a}{n} \right) \leq \int_a^b f(x) \, dx \leq \sum_{k=1}^n t_k \left( \frac{b-a}{n} \right). \end{align*}

    And, since s_k = f(x_{k-1} = f \left( a + \frac{(k-1)(b-a)}{n} \right), and t_k = f(x_k) = f \left( a + \frac{k(b-a)}{n} \right) we have

        \begin{align*}  \implies && \sum_{k=1}^n f \left( a + \frac{(k-1)(b-a)}{n} \right) \left( \frac{b-a}{n} \right) \leq \int_a^b f(x) \, dx \leq \sum_{k=1}^n f \left( a + \frac{k(b-a)}{n} \right) \left( \frac{b-a}{n} \right) \\[9pt]  \implies && \left( \frac{b-a}{n} \right) \sum_{k=0}^{n-1} f \left( a+ \frac{k(b-a)}{n} \right) \leq \int_a^b f(x) \, dx \leq \left( \frac{b-a}{n} \right) \sum_{k=1}^n f \left( a+ \frac{k(b-a)}{n} \right). \qquad \blacksquare \end{align*}

Prove inequalities of the logarithm with respect to some series

Consider a partition P = \{ a_0, a_1, a_2, \ldots, a_n \} of the interval [1,x] for some x > 1.

  1. Find step functions that are constant on the open subintervals of P and integrate to derive the inequalities:

        \[ \sum_{k=1}^n \left( \frac{a_k - a_{k-1}}{a_k} \right) < \log x < \sum_{k=1}^n \left( \frac{a_k - a_{k-1}}{a_{k-1}} \right). \]

  2. Give a geometric interpretation of the inequalities in part (a).
  3. Find a particular partition P (i.e., choose particular values for a_0, a_1, \ldots, a_n) to establish the following inequalities for n > 1,

        \[ \sum_{k=2}^n \frac{1}{k} < \log n < \sum_{k=1}^{n-1} \frac{1}{k}. \]


  1. Proof. We define step function s and t by

        \begin{align*}  s(x) &= \frac{1}{a_k} & \text{for } x &\in [a_{k-1}, a_k ) \\  t(x) &= \frac{1}{a_{k-1}} & \text{for } x &\in [a_{k-1}, a_k ). \end{align*}

    Since \frac{1}{x} is strictly decreasing on \mathbb{R}_{>0}, we have

        \[ s(x) < \frac{1}{x} < t(x) \qquad \text{for all } x \in \mathbb{R}_{>0}. \]

    Therefore, using the definition of the integral of a step function as a sum,

        \begin{align*}  && \int_1^x s(u) \, du &< \int_1^x \frac{1}{u} \, du < \int_1^x t(u) \, du \\ \implies && \sum_{k=1} s_k (a_k - a_{k-1} ) &< \log x < \sum_{k=1}^n t_k (a_k - a_{k-1}) \\ \implies && \sum_{k=1}^n \left( \frac{a_k - a_{k-1}}{a_k} \right) &< \log x < \sum_{k=1}^n \left( \frac{a_k - a_{k-1}}{a_{k-1}} \right). \qquad \blacksquare \end{align*}

  2. Geometrically, these inequalities say that the area under the curve \frac{1}{x} lies between the step functions that take on the values \frac{1}{a_k} and \frac{1}{a_{k-1}} for each x \in [ a_{k-1}, a_k ).
  3. Proof. To establish these inequalities we pick the partition,

        \[ P = \{ 1, 2, 3, \ldots, n \} \qquad \text{for } n > 1. \]

    Then, applying part (a) we have

        \begin{align*}  && \sum_{k=1}^n \left( \frac{a_k - a_{k-1}}{a_k} \right) &< \log x < \sum_{k=1}^n \left( \frac{a_k - a_{k-1}}{a_{k-1}} \right) \\  \implies && \sum_{k=1}^n \frac{1}{a_k} &< \log n < \sum_{k=1}^n \frac{1}{a_{k-1}} &(\text{since } a_k - a_{k-1} = 1) \\  \implies && \sum_{k=2}^n \frac{1}{k} &< \log n < \sum_{k=1}^{n-1} \frac{1}{k}. \end{align*}

    The final line follows since a_0 = 1, a_1 = 2, \ldots so the sum on the left starts with \frac{1}{2} and the sum on the right only runs to \frac{1}{n-1}. These were the inequalities requested. \qquad \blacksquare

Prove the additive property of integrals of step functions

For s(x), t(x) step functions defined on an interval [a,b], prove

    \[ \int_a^b (s(x) + t(x)) \, dx = \int_a^b s(x) \, dx + \int_a^b t(x) \, dx. \]


Proof. Let P = \{ x_0, x_1, \ldots, x_n \} be a partition of [a,b] such that s(x)+t(x) is constant on the open subintervals of P (we know such a P exists since we can take the common refinement of the partition of [a,b] on which s(x) and t(x) individually are constant on open subintervals). Let s(x) + t(x) = s_k + t_k if x_{k-1} < x < x_k for k=1,2, \ldots, n. Then, working from the definition of the integral of a step function on an interval, we have

    \begin{align*}  \int_a^b (s(x)+t(x))\, dx &= \sum_{k=1}^n (s_k + t_k)(x_k - x_{k-1}) \\  &= \sum_{k=1}^n \left( s_k (x_k - x_{k-1}) + t_k (x_k - x_{k-1}) \right) \\  &= \sum_{k=1}^n s_k (x_k - x_{k-1}) + \sum_{k=1}^n t_k (x_k - x_{k-1}) \\  &= \int_a^b s(x) \, dx + \int_a^b t(x) \, dx. \qquad \blacksquare \end{align*}

Draw the graphs of some functions

Draw the graphs of the functions defined below on the interval [-2,2], and if it is a step function find a partition P such that the function is constant on the open subintervals of P.

  1. f(x) = x + [x].
  2. f(x) = x - [x].
  3. f(x) = [-x].
  4. f(x) = 2[x].
  5. f(x) = \left[x+\frac{1}{2} \right].
  6. f(x) = [x] + \left[ x+ \frac{1}{2} \right].

  1. This is not a step function. The graph is below.

    Rendered by QuickLaTeX.com

  2. This is not a step function. The graph is below.

    Rendered by QuickLaTeX.com

  3. This is a step function and it is constant on the open subintervals of the partition, P = \{ -2,-1,0,1,2 \}. The graph is below.

    Rendered by QuickLaTeX.com

  4. This is a step function and it is constant on the open subintervals of the partition, P = \{ -2,-1,0,1,2 \}. The graph is below.

    Rendered by QuickLaTeX.com

  5. This is a step function and it is constant on the open subintervals of the partition, P = \left\{ -2,-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2},2 \right\}. The graph is below.

    Rendered by QuickLaTeX.com

  6. This is a step function and it is constant on the open subintervals of the partition, P = \left\{ -2,-\frac{3}{2},-1,-\frac{1}{2},0,\frac{1}{2},1,\frac{3}{2},2 \right\}. The graph is below.

    Rendered by QuickLaTeX.com