Home » Partial Fractions » Page 2

Tag: Partial Fractions

Evaluate the following integral 1 / ((x+1)(x+2)2(x+3)3)

Compute the following integral.

    \[ \int \frac{dx}{(x+1)(x+2)^2(x+3)^3}. \]

First, we use partial fraction decomposition. We write

    \[ \frac{1}{(x+1)(x+2)^2(x+3)^3} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2} + \frac{D}{x+3} + \frac{E}{(x+3)^2} + \frac{F}{(x+3)^3}. \]

This gives us the equation

    \begin{align*} A&(x+2)^2 (x+3)^3 + B(x+1)(x+2)(x+3)^3 + C(x+1)(x+3)^3 \\&+ D(x+1)(x+2)^2(x+3)^2  + E(x+1)(x+2)^2(x+3) + F(x+1)(x+2)^2 = 1.  \end{align*}

First, we substitute the values x = -1, x = -2, and x = -3 which gives us

    \begin{align*}  8A &= 1 & \implies \qquad A &= \frac{1}{8}\\  -C &= 1 & \implies \qquad C &= -1 \\  -2F &= 1 & \implies \qquad F &= -\frac{1}{2}. \end{align*}

Substituting these values of A, C, and F into our equation we have

    \begin{align*}    \frac{1}{8}&(x+2)^2(x+3)^3 + B(x+1)(x+2)(x+3)^3 - (x+1)(x+3)^3 \\ &+ D(x+1)(x+2)^2(x+3)^2 + E(x+1)(x+2)^2(x+3) - \frac{1}{2}(x+1)(x+2)^2 = 1. \end{align*}

Now, we substitute the values x = 0, x = 1 and x = 2 to obtain the equations

    \begin{align*}  \frac{27}{4} + 54B - 27 + 36D + 12E - 2 &= 1 \\  72 + 384B - 128 + 288D + 72E - 9 &= 1 \\  250 + 1500B - 375 + 1200D + 240E - 24 &= 1. \end{align*}

Solving this system we obtain the values

    \[ B = 2, \qquad D = -\frac{17}{8}, \qquad E = -\frac{5}{4}. \]

Therefore, we have the following,

    \begin{align*}  \int \frac{dx}{(x+1)(x+2)^2(x+3)^3} &= \int \left( \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2} \right.\\  & \left. \qquad + \frac{D}{x+3} + \frac{E}{(x+3)^2} + \frac{F}{(x+3)^3} \right) \, dx \\[10pt]  &= \frac{1}{8} \int \frac{dx}{x+1} + 2 \int \frac{dx}{x+2} - \int \frac{dx}{(x+2)^2} \\  & \qquad -\frac{17}{8} \int \frac{dx}{x+3} - \frac{5}{4} \int \frac{dx}{(x+3)^2} - \frac{1}{2} \int \frac{dx}{(x+3)^3} \\[10pt]  &= \frac{1}{8}\log |x+1|  + 2 \log |x+2| + \frac{1}{x+2} - \frac{17}{8} \log |x+3| \\  & \qquad + \frac{5}{4} \frac{1}{x+3} + \frac{1}{4} \frac{1}{(x+3)^2} + C \\[10pt]  &= \frac{4(x+3)^2 + 5(x+2)(x+3) + x + 2 }{4 (x+2)(x+3)^2} \\  & \qquad + \frac{1}{8} \Big( \log|x+1| + 16 \log|x+2| - 17 \log|x+3| \Big) + C\\[10pt]  &= \frac{9x^2 + 50x + 68}{4(x+2)(x+3)^2} + \frac{1}{8} \log \left| \frac{(x+1)(x+2)^{16}}{(x+3)^{17}} \right| + C. \end{align*}

Evaluate the integral of x4 / (x4 +5x2 + 4)

Compute the following integral.

    \[ \int \frac{x^4 \, dx}{x^4 + 5x^2 + 4}. \]


First, we simplify the integrand and then use partial fractions,

    \[ \int \frac{x^4 \, dx}{x^4 + 5x^2 + 4} = \int \frac{x^4 + 5x^2 + 4 - 5x^2 - 4}{x^4 + 5x^2 + 4} \, dx = \int \, dx - \int \frac{5x^2 + 4}{x^4 + 5x^2 + 4} \, dx. \]

To evaluate the second integral we use partial fractions. We have

    \[ x^4 + 5x^2 + 4 = (x^2+4)(x^2+1). \]

Therefore, we write

    \[ \frac{5x^2+4}{x^4 + 5x^2 + 4} = \frac{Ax+B}{x^2+4} + \frac{Cx + D}{x^2+1}. \]

Then we have the equation

    \begin{align*}  &&(Ax+B)(x^2+1) + (Cx+D)(x^2+4) &= 5x^2 + 4 \\ \implies && (A+C)x^3 + (B+D)x^2 + (A+4C)x + (B+4D) &= 5x^2 + 4. \end{align*}

Equating like powers of x we then have four equations and four unknowns:

    \begin{align*}  A+C &= 0 \\  B+D &= 5 \\  A+4C &= 0 \\  B+4D &= 4. \end{align*}

Solving this system we find A = C = 0, B = \frac{16}{3} and D = -\frac{1}{3}. Therefore, we have

    \begin{align*}  \int \frac{x^4 \, dx}{x^4 + 5x^2 + 4} &= \int dx - \int \frac{5x^2+4}{(x^2+4)(x^2+1)} \, dx \\  &= x - \frac{16}{3} \int \frac{dx}{x^2+4} + \frac{1}{3} \int \frac{dx}{1+x^2} \\  &= x + \frac{1}{3} \arctan x - \frac{8}{3} \arctan \left( \frac{x}{2} \right) + C.  \end{align*}

Evaluate the integral of (8x3 + 7) / ((x+1)(2x+1)3)

Compute the following integral.

    \[ \int \frac{8x^3 + 7}{(x+1)(2x+1)^3} \, dx. \]


Since the denominator is already factored into linear terms we can proceed directly with the partial fraction decomposition. We write,

    \[ \frac{8x^3 + 7}{(x+1)(2x+1)^3} = \frac{A}{x+1} + \frac{B}{2x+1} + \frac{C}{(2x+1)^2} + \frac{D}{(2x+1)^3}. \]

This gives us the equation

    \[ A(2x+1)^3 + B(x+1)(2x+1)^2 + C(x+1)(2x+1) + D(x+1) = 8x^3 + 7. \]

First, we can find the values of A and D by evaluating at x = -1 and x = -\frac{1}{2}, respectively. This gives us

    \begin{align*}  -A &= -1 & \implies \quad A &= 1 \\  \frac{1}{2}D &= 6 & \implies \quad D &= 12. \end{align*}

Then using these values of A and D we evaluate at x = 0 and x = 1 (these are just convenient values, there isn’t anything special about them) to obtain the two equations

    \begin{align*}    1 + B + C + 12 &= 7 & \implies \quad B + C &= -6 \\  27 + 18B + 6C + 24 &= 15 & \implies \quad 3B + C &= -6. \end{align*}

Solving these two equations we obtain B = 0 and C = -6. Therefore, we have the following partial fraction decomposition:

    \[ \frac{8x^3 + 7}{(x+1)(2x+1)^3} = \frac{1}{x+1} - \frac{6}{(2x+1)^2} + \frac{12}{(2x+1)^3}. \]

We can now evaluate the integral,

    \begin{align*}  \int \frac{8x^3 + 7}{(x+1)(2x+1)^3} \, dx &= \int \frac{dx}{x+1} - 3 \int \frac{2 \, dx}{(2x+1)^2} + 6 \int \frac{2\, dx}{(2x+1)^3} \\  &= \log |x+1| + \frac{3}{2x+1} - \frac{3}{(2x+1)^2} + C. \end{align*}