Home » Logarithm » Page 2

Tag: Logarithm

Some true/false questions

For each statement, prove that it is true or show that it is false.

  1. 2^{\log 5} = 5^{\log 2}.
  2. \displaystyle{\log_2 5 = \frac{\log_3 5}{\log_2 3}}.
  3. \displaystyle{ \sum_{k=1}^n \frac{1}{\sqrt{k}} < 2 \sqrt{n}} for every n \geq 1.
  4. 1 + \sinh x \leq \cosh x for all x.

  1. True.
    Proof. We can compute using the definition of the exponential

        \[ 2^{\log 5} = e^{\log \left( 2^{\log 5} \right)} = e^{\log 5 \cdot \log 2} = e^{\log 2 \cdot \log 5} = e^{\log \left(5^{\log 2} \right)} = 5^{\log 2}. \qquad \blacksquare\]

  2. False.
    On the left we have

        \[ \log_2 5 = \frac{\log 5}{\log 2}. \]

    While on the right we have,

        \[ \frac{\log_3 5}{\log_2 3} = \frac{\frac{\log 5}{\log 3}}{\frac{\log 3}{\log 2}}} = \frac{\log 5 \log 2}{(\log 3)^2} = \left( \frac{\log 5}{\log 2} \right) \left( \frac{\log 2}{\log 3} \right)^2.\]

    But since \frac{\log 2}{\log 3} \neq 1, these two quantities cannot be equal.

  3. True.
    Proof. The proof is by induction. For the case n = 1 on the left we have

        \[ \sum_{k=1}^1 \frac{1}{\sqrt{k}} = 1. \]

    While on the right we have

        \[ 2 \sqrt{1} = 2. \]

    Therefore, indeed for the case n = 1.

        \[ \sum_{k=1}^n \frac{1}{\sqrt{k}} < 2 \sqrt{n}. \]

    Assume then that the statement is true for some positive integer m. Then,

        \begin{align*}  \sum_{k=1}^{m+1} \frac{1}{\sqrt{k}} &= \frac{1}{\sqrt{m+1}} + \sum_{k=1}^m \frac{1}{\sqrt{k}} \\[9pt]  &< \frac{1}{\sqrt{m+1}} + 2 \sqrt{m} &(\text{Ind. hyp.}) \\[9pt]  &= \frac{2\sqrt{m}\sqrt{m+1} + 1}{\sqrt{m+1}} \\[9pt]  &= 2 \left( \frac{\sqrt{m^2 + m} + \frac{1}{2}}{\sqrt{m+1}} \right) \\[9pt]  &< 2 \left( \frac{\sqrt{m^2+m+\frac{1}{4}} + \frac{1}{2}}{\sqrt{m+1}} \right) \\[9pt]  &= 2 \left( \frac{\sqrt{(m+\frac{1}{2})^2} + \frac{1}{2}}{\sqrt{m+1}} \right)\\[9pt]  &= 2 \left( \frac{m+\frac{1}{2}  +\frac{1}{2}}{\sqrt{m+1}} \right) \\[9pt]  &= 2 \sqrt{m+1}. \end{align*}

    Thus, the inequality holds for the case m+1; hence, it holds for all positive integers n. \qquad \blacksquare

  4. False.
    From the definitions of \sinh and \cosh we have

        \[ \sinh x =\frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2}. \]

    Using these definitions, the inequality states

        \begin{align*}  1 + \sinh x \leq \cosh x && \implies && 1 + \frac{e^x - e^{-x}}{2} &\leq \frac{e^x + e^{-x}}{2} \\[9pt]  && \implies && 2 + e^x - e^{-x} &\leq e^x + e^{-x} \\[9pt]  && \implies && 2 \leq 2e^{-x}. \end{align*}

    However, this is false if x < 0 since e^{-x} > 1 for x < 0.

Find all x satisfying equations given in terms of sinh

Let c be the number such that \sinh c = \frac{3}{4}. Find all x that satisfy the given equations.

  1. \log (e^x + \sqrt{e^{2x} + 1}) = c.
  2. \log (e^x - \sqrt{e^{2x} - 1}) = c.

  1. We are given \sinh c = \frac{3}{4}. From the formula for \sinh this means

        \[ \frac{e^c - e^{-c}}{2} = \frac{3}{4}. \]

    Then, from the given equation we have

        \[ \log (e^x + \sqrt{e^{2x} + 1}) = c \quad \implies \quad e^x + \sqrt{e^{2x} + 1} = e^c. \]

    Thus,

        \[ e^{-c} = \frac{1}{e^x + \sqrt{e^{2x} + 1}}. \]

    So, then we have

        \begin{align*}  \frac{3}{4} = \frac{e^c - e^{-c}}{2} &= \frac{1}{2} \left( e^x + \sqrt{e^{2x} + 1}  - \frac{1}{e^x + \sqrt{e^{2x}+1}} \right) \\[9pt]  &= \frac{1}{2} \left( \frac{(e^x + \sqrt{e^{2x}+1})^2 - 1}{e^x + \sqrt{e^{2x}+1}} \right) \\[9pt]  &= \frac{e^{2x} + 2e^x \sqrt{e^{2x}+1} + e^{2x}+1 - 1}{2(e^x + \sqrt{e^{2x}+1})} \\[9pt]  &= \frac{e^{2x} + e^x \sqrt{e^{2x}+1}}{e^x + \sqrt{e^{2x}+1}} \\[9pt]  &= e^x \end{align*}

    Therefore we have

        \[ e^x = \frac{3}{4} \quad \implies \quad x = \log 3 - \log 4 = \log 3 - 2 \log 2.\]

  2. There can be no x which satisfy the given equation. As in part (a), we use the definition of \sinh x to obtain the equation,

        \[ \sinh c = \frac{3}{4} \quad \implies \quad e^c - e^{-c} = \frac{3}{2}. \]

    Next, we use the equation given in the problem to write,

        \begin{align*}  &&\log (e^x - \sqrt{e^{2x} - 1}) &= c \\[9pt]  \implies && e^x - \sqrt{e^{2x} -1} &= e^c \\[9pt] \implies && \frac{(e^x - \sqrt{e^{2x} - 1})(e^x + \sqrt{e^{2x}-1})}{e^x + \sqrt{e^{2x}-1}} &= e^c \\[9pt]  \implies && \frac{e^{2x} - e^{2x} + 1}{e^x + \sqrt{e^{2x}-1}} &= e^c \\[9pt]  \implies && \frac{1}{e^x + \sqrt{e^{2x}-1}} &= e^c. \end{align*}

    Furthermore, we can obtain an expression for e^{-c} by considering

        \[ e^x - \sqrt{e^{2x} - 1} &= e^c \quad \implies \quad \frac{1}{e^x - \sqrt{e^{2x} - 1}} &= e^{-c}. \]

    Putting these expressions for e^c and e^{-c} into our original equation we have

        \begin{align*}  \frac{3}{2} &= e^c - e^{-c} \\[9pt]  &= \left( \frac{1}{e^x + \sqrt{e^{2x}-1}} \right) - \left( \frac{1}{e^x - \sqrt{e^{2x}-1}} \right) \\[9pt]  &= \frac{e^x - \sqrt{e^{2x}-1} - e^x - \sqrt{e^{2x}-1}}{(e^x + \sqrt{e^{2x}-1})(e^x - \sqrt{e^{2x}-1})} \\[9pt]  &= \frac{ -2 \sqrt{e^{2x}-1}}{e^{2x} - e^{2x} + 1} \\[9pt]  &= -2\sqrt{e^{2x}-1} \end{align*}

    But this implies

        \[ \sqrt{e^{2x}-1} = -\frac{3}{4} \]

    which is impossible. Hence, there can be no real x satisfying this equation.

Prove the formulas for derivatives of products and quotients

Derive the formulas for the derivative of a product and the derivative of a quotient from the corresponding formulas for the derivative of a sum and the derivative of a difference.


We know the derivative rules for sums and differences are:

    \[ \left( f(x) + g(x) \right)' = f'(x) + g'(x) \quad \text{and} \quad \left( f(x) - g(x) \right)' = f'(x) - g'(x). \]

To derive the derivative rule for products using logarithmic differentiation we let h(x) = f(x)g(x) and compute

    \begin{align*}  h(x) = f(x)g(x) && \implies && \log |h(x)| &= \log |f(x)g(x)| \\[9pt]  && \implies && (\log |h(x)|)' &= (\log |f(x)g(x)|)' \\[9pt]  && \implies && \frac{h'(x)}{h(x)} &= (\log |f(x)| + \log |g(x)|)' \\[9pt]  && \implies && \frac{h'(x)}{h(x)} &= \frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)} \\[9pt]  && \implies && h'(x) &= \left( \frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)} \right) h(x) \\[9pt]  && \implies && h'(x) &= \left( \frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)} \right) f(x)g(x) \\[9pt]  && \implies && (f(x)g(x))' &= f'(x) g(x) + f(x)g'(x). \end{align*}

This is the usual rule for derivative of a product.

Similarly, for the derivative of a quotient, let h(x) = \frac{f(x)}{g(x)} and then compute,

    \begin{align*}  h(x) = \frac{f(x)}{g(x)} && \implies && \log | h(x)| &= \log \left| \frac{f(x)}{g(x)} \right| \\[9pt]  && \implies && (\log|h(x)|)' &= \left( \log \left| \frac{f(x)}{g(x)} \right| \right)' \\[9pt]  && \implies && \frac{h'(x)}{h(x)} &= \left( \log |f(x)| - \log |g(x)| \right) ' \\[9pt]  && \implies && \frac{h'(x)}{h(x)} &= \frac{f'(x)}{f(x)} - \frac{g'(x)}{g(x)} \\[9pt]  && \implies && h'(x) &= \left( \frac{f'(x)}{f(x)} - \frac{g'(x)}{g(x)} \right) h(x) \\[9pt]  && \implies && h'(x) &= \left( \frac{f'(x)}{f(x)} - \frac{g'(x)}{g(x)} \right) \frac{f(x)}{g(x)} \\[9pt]  && \implies && \left( \frac{f(x)}{g(x)} \right)' &= \frac{f'(x)g(x) - g'(x)f(x)}{f(x)g(x)} \cdot \frac{f(x)}{g(x)} \\[9pt]  && \implies && \left( \frac{f(x)}{g(x)} \right)' &= \frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2}. \end{align*}

Which is the usual rule for derivative of a quotient.

Prove a property of the derivative if arctangent and the logarithm obey a given relation

If

    \[ \arctan \frac{y}{x} = \log \sqrt{x^2 + y^2} \]

prove that

    \[ \frac{dy}{dx} = \frac{x+y}{x-y}. \]


Proof. First, we consider the derivatives of the left and right side of the given equation. (Treating y as a function of x and remembering to use the chain rule.) So, for the derivative on the left, we have

    \begin{align*}  D \left( \arctan \frac{y}{x} \right) &= \left( \frac{-y}{x^2} + \frac{1}{x} \frac{dy}{dx} \right) \left( \frac{1}{1+\left( \frac{y}{x} \right)^2} \right) \\ &= \frac{x \frac{dy}{dx} - y}{x^2+y^2}. \end{align*}

On the right we have,

    \begin{align*}  D \left( \log \sqrt{x^2+y^2} \right) &= \left( x + y \frac{dy}{dx} \right) \left( \frac{1}{x^2+y^2} \right)\\  &= \frac{x + y \frac{dy}{dx}}{x^2+y^2}. \end{align*}

Now, using the given equation we have

    \begin{align*}  \arctan \frac{y}{x} = \log \sqrt{x^2+y^2} && \implies && D \left( \arctan \frac{y}{x} \right) &= D \left( \log \sqrt{x^2+y^2} \right) \\[9pt]  && \implies && \frac{x \frac{dy}{dx} - y}{x^2+y^2} &= \frac{x+y\frac{dy}{dx}}{x^2+y^2} \\[9pt]  && \implies && x \frac{dy}{dx} - y &= x + y\frac{dy}{dx} \\  && \implies && (x-y) \frac{dy}{dx} &= x + y \\  && \implies && \frac{dy}{dx} &= \frac{x+y}{x-y}. \qquad \blacksquare \end{align*}