Home » Limits » Page 2

Tag: Limits

Test the improper integral ∫ 1 / x (log x)s for convergence

Test the following improper integral for convergence:

    \[ \int_2^{\infty} \frac{dx}{x (\log x)^s}. \]


The integral converges if s < 1 and diverges for s \geq 1.

Proof. We can compute this directly. We evaluate the indefinite integral (using the substitution u = \log x) for s \neq 1:

    \begin{align*}   \int \frac{1}{x (\log x)^s} \, dx &= \int \frac{1}{u^s} \, du \\  &= \frac{u^{1-s}}{1-s} \\  &= \frac{(\log x)^{1-s}}{1-s}. \end{align*}

But then the limit

    \[ \lim_{x \to +\infty} \frac{(\log x)^{1-s}}{1-s} \]

is finite for s > 1 and diverges for s \leq 1 (since \log x \to \infty as x \to \infty and so the limit diverges when 1-s > 0 and converges for 1-s < 0). Hence, the integral

    \[ \int_2^{\infty} \frac{dx}{x (\log x)^s} \]

converges for s > 1 and diverges for s < 1. In the case that s = 1 the indefinite integral is

    \[ \int \frac{1}{x \log x} \, dx = \log (\log x) \]

and \log (\log x) \to +\infty as x \to +\infty, so the integral divers for s = 1 as well. Therefore, we have the integral converges for s > 1 and diverges for s \leq 1. \qquad \blacksquare

Test the improper integral ∫ 1 / (x1/2 log x) for convergence

Test the following improper integral for convergence:

    \[ \int_{0^+}^{1^-} \frac{dx}{\sqrt{x} \log x}. \]


The integral diverges.

Proof. First, we show that \log x < \sqrt{x} for all x> 0. To do this let

    \[ f(x) = \sqrt{x} - \log x \quad \implies \quad f'(x) = \frac{1}{2 \sqrt{x}} - \frac{1}{x} = \frac{\sqrt{x} - 2}{2x}. \]

This derivative is 0 at x = 4 and is less than 0 for x < 4 and greater than 0 for x > 4. Hence, f(x) has a minimum at x = 4. But, f(4) = \sqrt{4} - \log 4 = 2 - 2 \log 2 > 0 (since 2 < e implies \log 2 < 1). So, f(x) has a minimum at x = 4 and is positive there; thus, it is positive for all x > 0, or

    \[ f(x) = \sqrt{x} - \log x > 0 \quad \implies \quad \sqrt{x} > \log x \qquad \text{for all } x > 0. \]

So, since \log x < \sqrt{x} we know

    \[ \frac{1}{\sqrt{x} \log x} > \frac{1}{\sqrt{x} \cdot \sqrt{x}} = \frac{1}{x}. \]

But then, consider the limit

    \begin{align*}  \lim_{x \to 0^+} \frac{ \frac{1}{x} }{ \frac{1}{\sqrt{x} \log x}} &= \lim_{x \to 0^+} \frac{\log x}{\sqrt{x}} \\  &= \lim_{x \to 0^+} \frac{\log x}{x^{\frac{1}{2}}} \\[9pt]  &= 0 &(\text{by Theorem 7.11}). \end{align*}

Therefore, by the limit comparison test (Theorem 10.25), the convergence of \frac{1}{\sqrt{x} \log x} would imply the convergence of \int_{0^+}^a \frac{1}{x} (for any 0 < a < 1), but we know by Example 5 that this integral diverges. Hence, we must also have the divergence of

    \[ \int_{0^-}^{1^+} \frac{1}{\sqrt{x} \log x} \, dx. \qquad \blacksquare \]

Test the improper integral ∫ log x / (1-x) for convergence

Test the following improper integral for convergence:

    \[ \int_{0^+}^{1^-} \frac{\log x}{1-x} \, dx. \]


The integral converges.

Proof. First, we write

    \[ \int_{0^+}^{1^-1} \frac{\log x}{1-x} \,dx = \int_{0^+}^{\frac{1}{2}} \frac{\log x}{1-x} \, dx  + \int_{\frac{1}{2}}^{1^-} \frac{\log x}{1-x} \, dx. \]

For the first integral we know for all x \in \left( 0 , \frac{1}{2} \right) we have \frac{1}{2} \leq (1-x) < 1; hence,

    \[ \frac{\log x}{1-x} < 2 \log x \qquad \text{for all } x \in \left( 0, \frac{1}{2} \right). \]

Then, the integral

    \begin{align*}  2 \int_{0^+}^{\frac{1}{2}} \log x \, dx &= 2 \cdot \lim_{a \to 0^+} \int_a^{\frac{1}{2}} \log x \, dx \\[9pt]  &= 2 \cdot \lim_{a \to 0^+} \left( x \log x - x \right)\Bigr \rvert_a^{\frac{1}{2}} \\[9pt]  &= 2 \cdot \lim_{a \to 0^+} \left( \frac{1}{2} \log \frac{1}{2} - \frac{1}{2} - a \log a + a \right) \\[9pt]  &= \log \frac{1}{2} - 1 \\[9pt]  &= - \log 2 - 1. \end{align*}

(We know \lim_{a \to 0} x \log x = 0 by L’Hopital’s, writing x \log x = \frac{\log x}{1/x} or by Example 2 on page 302 of Apostol.) Hence,

    \[ \int_{0^+}^{\frac{1}{2}} \frac{\log x}{1-x} \, dx \]

converges by the comparison theorem (Theorem 10.24 on page 418 of Apostol).

For the second integral, we use the expansion of \log x about x = 1,

    \[ \log x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \cdots. \]

Then we have

    \begin{align*}  \int_{\frac{1}{2}}^{1^-} \frac{\log x}{1-x} \, dx &= \int_{\frac{1}{2}}^{1^-} \frac{ (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \cdots }{1-x} \, dx \\[9pt]  &= \int_{\frac{1}{2}}^{1^-} \left( -1 + \frac{x-1}{2} - \frac{(x-1)^2}{3} + \cdots \right) \, dx. \end{align*}

But this integral converges since it has no singularities.

Thus, we have established the convergence of

    \[ \int_{0^+}^{1^-} \frac{\log x}{1-x} \, dx. \qquad \blacksquare \]

Test the improper integral ∫ 1 / (x3 + 1)1/2 for convergence

Test the following improper integral for convergence:

    \[ \int_0^{\infty} \frac{1}{\sqrt{x^3+1}} \, dx. \]


The integral converges.

Proof. We know the integral \int_0^{\infty} \frac{1}{x^{\frac{3}{2}}} \, dx converges (example #1 on page 417 of Apostol). Applying the limit comparison test (by the note to Theorem 10.25 on page 418, which says that if \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0 then the convergence of \int g(x) implies the convergence of \int f(x).) we have

    \begin{align*}  \lim_{x \to +\infty} \frac{f(x)}{g(x)} &= \lim_{x \to +\infty} \frac{ \frac{1}{\sqrt{x^3+1}}}{\frac{1}{x}} \\[9pt]  &= \lim_{x \to +\infty} \frac{x}{\sqrt{x^3+1}} \\[9pt]  &= \lim_{x \to +\infty} \frac{1}{x^{\frac{1}{2}} \sqrt{1 + \frac{1}{x}}} \\[9pt]  &= 0. \end{align*}

Since we know \int_0^{\infty} \frac{1}{x^{\frac{3}{2}}} \, dx converges the theorem establishes the convergence of

    \[ \int_0^{\infty} \frac{1}{\sqrt{x^3+1}} \, dx. \qquad \blacksquare \]

Prove that the recursive sequence 1 / xn+2 = 1 / xn+1 + 1 / xn converges

Prove that the sequence \{ x_n \} be defined by the recursive relationship,

    \[ x_0 = 1, \qquad x_1 = 1, \qquad \frac{1}{x_{n+2}} = \frac{1}{x_{n+1}} + \frac{1}{x_n} \]

converges and find the limit of the sequence.


Proof. First, we show that the sequence \{ x_n \} is monotonically decreasing for all n \geq 1. For the base case we have x_1 = 1 and

    \[ \frac{1}{x_2} = \frac{1}{1} + \frac{1}{1} = 2 \quad \implies \quad x_2 = \frac{1}{2}. \]

Hence, x_2 < x_1. Assume then that for all positive integers up to some k we have x_{k+1} < x_k. Then,

    \begin{align*}  && \frac{1}{x_{k+2}} &= \frac{1}{x_{k+1}} + \frac{1}{x_k} \\[9pt]  \implies && \frac{1}{x_{k+2}} &> \frac{1}{x_{k+1}} + \frac{1}{x_{k+1}} &(x_{k+1} < x_k \implies \frac{1}{x_{k+1}} > \frac{1}{x_k}) \\[9pt]  \implies && \frac{1}{x_{k+2}} &> \frac{2}{x_{k+1}} \\[9pt]  \implies && x_{k+2} &< \frac{x_{k+1}}{2} \\[9pt]  \implies && x_{k+2} &< x_{k+1}. \end{align*}

Thus, the sequences is monotonically decreasing. The sequence is certainly bounded below since all of the terms are greater than 0. Therefore, the sequence converges. \qquad \blacksquare

To compute the limit of the sequence, assume the sequence converges to a finite limit L (justified since we just proved that it does indeed converge). Therefore,

    \begin{align*}  && \lim_{n \to \infty} x_n &= L \\[9pt]  \implies && \lim_{n \to \infty} \frac{1}{x_n} &= \frac{1}{L} \\[9pt]  \implies && \lim_{n \to \infty} \left( \frac{1}{x_{n-1}} + \frac{1}{x_{n-2}} \right) &= \frac{1}{L} \\[9pt]  \implies && \frac{1}{L} + \frac{1}{L} &= \frac{1}{L} \\[9pt]  \implies && 2L &= L \\[9pt]  \implies && L &= 0. \end{align*}