Let
and
be constants with at least one of them nonzero and define
![Rendered by QuickLaTeX.com \[ A = \int e^{ax} \cos (bx) \, dx, \qquad B = \int e^{ax} \sin (bx) \, dx. \]](https://www.stumblingrobot.com/wp-content/ql-cache/quicklatex.com-fc83124a934fb017ccdc6fc2fb212d74_l3.png)
Using integration by parts, establish the following formulas for constants
,
![Rendered by QuickLaTeX.com \[ aA - bB = e^{ax} \cos (bx) + C_1, \qquad aB + bA = e^{ax} \sin (bx) + C_2. \]](https://www.stumblingrobot.com/wp-content/ql-cache/quicklatex.com-4851f7ea2aa42f29ee6ee4428b7ccf5a_l3.png)
Using these formulas prove the following integration formulas,

To establish the formula
we use integration by parts letting

Then we can evaluate
using the formula for integration by parts,
![Rendered by QuickLaTeX.com \begin{align*} &&A &= \int e^{ax} \cos (bx) \, dx \\[9pt] \implies && A&= \frac{1}{a}e^{ax} \cos (bx) + \frac{b}{a} \int e^{ax} \sin (bx) \, dx + C_1 \\[9pt] \implies && aA &= e^{ax} \cos (bx) + bB + C_1 \\[9pt] \implies && aA - bB &= e^{ax} \cos (bx) + C_1. \end{align*}](https://www.stumblingrobot.com/wp-content/ql-cache/quicklatex.com-7f76c3ecab7d43118d07d5f4f392071d_l3.png)
To establish the second formula,
, we use integration by parts again. Let

Then we have
![Rendered by QuickLaTeX.com \begin{align*} && B&= \int e^{ax} \sin (bx) \, dx \\[9pt] \implies && B &= \frac{1}{a} e^{ax} \sin (bx) - \frac{b}{a} \int e^{ax} \cos (bx) \, dx + C_2 \\[9pt] \implies && aB &= e^{ax} \sin (bx) - bA + C_2 \\[9pt] \implies && aB + bA &= e^{ax} \sin (bx) + C_2. \end{align*}](https://www.stumblingrobot.com/wp-content/ql-cache/quicklatex.com-aa51fc2df06ae5ff9d839739a0d85bcb_l3.png)
This establishes the two requested equations, now we prove the two integral identities.
Proof. Solving for
in the second equation above we have
![Rendered by QuickLaTeX.com \[ aB + bA = e^{ax} \sin (bx) + C_2 \quad \implies \quad B = \frac{1}{a} \left( e^{ax} \sin (bx) - bA) + C_2. \]](https://www.stumblingrobot.com/wp-content/ql-cache/quicklatex.com-934609064afc4c24291490a8fe0c66bf_l3.png)
Plugging this into the first equation we have
![Rendered by QuickLaTeX.com \begin{align*} && aA - bB &= e^{ax} \cos (bx) + C_1 \\[9pt] \implies && aA - \frac{b}{a} \left( e^{ax} \sin (bx) - bA + C_2 \right) &= e^{ax} \cos (bx) + C_1 \\[9pt] \implies && aA - \frac{b}{a} e^{ax} \sin (bx) + \frac{b^2}{a} A &= e^{ax} \cos (bx) + C \\[9pt] \implies && A \left( a + \frac{b^2}{a}\right) &= e^{ax} \cos (bx) + \frac{b}{a} e^{ax} \sin (bx) + C \\[9pt] \implies && A (a^2 + b^2) &= a e^{ax} \cos (bx) + b e^{ax} \sin (bx) + C \\[9pt] \implies && A &= \frac{a e^{ax} \cos (bx) + b e^{ax} \sin (bx)}{a^2+b^2} + C \\[9pt] \implies && \int e^{ax} \cos (bx) \, dx &= \frac{a e^{ax} \cos (bx) + b e^{ax} \sin (bx)}{a^2+b^2} + C. \end{align*}](https://www.stumblingrobot.com/wp-content/ql-cache/quicklatex.com-654b0400d266d02d0efc91758a9c2f0f_l3.png)
Next, for the second integral equation we are asked to prove, we use the formula we obtained for
above,
![Rendered by QuickLaTeX.com \[ B = \frac{1}{a} \left( e^{ax} \sin (bx) - bA \right) + C. \]](https://www.stumblingrobot.com/wp-content/ql-cache/quicklatex.com-c36308b0d6e628f8ceaf46eb446cf03b_l3.png)
Then, we use the expression we obtained for
into this,
![Rendered by QuickLaTeX.com \[ B = \frac{1}{a} \left( e^{ax} \sin (bx) - b \left( \frac{a e^{ax} \cos (bx) + b e^{ax} \sin (bx)}{a^2+b^2} \right) \right) + C. \]](https://www.stumblingrobot.com/wp-content/ql-cache/quicklatex.com-cd284a968f66e885f553458811ba7fe1_l3.png)
This implies,
![Rendered by QuickLaTeX.com \begin{align*} && B &= \frac{1}{a} e^{ax} \sin (bx) - \frac{be^{ax} \cos (bx) + \frac{b^2}{a} e^{ax} \sin (bx)}{a^2+b^2} + C \\[9pt] \implies && B &= \frac{(a^2+b^2)e^{ax} \sin (bx) - (ab)e^{ax} \cos (bx) - b^2 e^{ax} \sin (bx)}{a(a^2+b^2)} + C \\[9pt] \implies && B &= \frac{a^2 e^{ax} \sin (bx) - (ab) e^{ax} \cos (bx)}{a(a^2+b^2)} + C \\[9pt] \implies && B &= \frac{a e^{ax} \sin (bx) - b e^{ax} \cos (bx)}{a^2+b^2} + C \\[9pt] \implies && \int e^{ax} \sin (bx) \, dx &= \frac{a e^{ax} \sin (bx) - b e^{ax} \cos (bx)}{a^2+b^2} + C. \qquad \blacksquare \end{align*}](https://www.stumblingrobot.com/wp-content/ql-cache/quicklatex.com-29ad0828c8536223d573bd422867ca19_l3.png)