Home » Identities

Tag: Identities

Prove some vector identities using the “cab minus bac” formula

In the previous exercise (Section 13.14, Exercise #9) we proved the “cab minus bac” formula:

    \[ A \times (B \times C) = (C \cdot A) B - (B \cdot A) C. \]

Using this formula prove the following identities:

  1. (A \times B) \times (C \times D) = (A \times B \cdot D)C - (A \times B \cdot C) D.
  2. A \times (B \times C) + B \times (C \times A) + C \times (A \times B) = O.
  3. A \times (B \times C) = (A \times B) \times C if and only if B \times (C \times A) = O.
  4. (A \times B) \cdot (C \times D) = (B \cdot D)(A \cdot C) - (B \cdot C)(A \cdot D).

  1. Proof. Using the cab minus bac formula with A \times B in place of A, C in place of B, and D in place of C we have

        \begin{align*}  (A \times B) \times (C \times D) &= (D \cdot (A \times B))C - (C \cdot (A \times B))D \\  &= (A \times B \cdot D) C - (A \times B \cdot C) D. \qquad \blacksquare \end{align*}

  2. Proof. Applying the cab minus back formula to each of the three terms in the sum we have

        \begin{align*}  A \times (B \times C) &= (C \cdot A) B - (B \cdot A)C \\  B \times (C \times A) &= (A \cdot B) C - (C \cdot B)A \\  C \times (A \times B) &= (B \cdot C) A - (A \cdot C)B. \end{align*}

    So, putting these together we have

        \begin{align*}  A &\times (B \times C) + B \times (C \times A) + C \times (A \times B) \\  &= (C \cdot A)B - (B\cdot A)C + (A \cdot B)C - (C \cdot B)A + (B \cdot C)A - (A \cdot C)B \\  &= O. \qquad \blacksquare \end{align*}

  3. Proof. From cab minus bac we have

        \[ A \times (B \times C) = (C \cdot A)B - (B \cdot A)C. \]

    Furthermore, since (A \times B) \times C = -C \times (A \times B), we can apply bac minus cab to get

        \begin{align*}  (A \times B) \times C &= -C \times (A \times B) &(\text{Thm 13.12(a)}) \\  &= - ((B \cdot C)A - (A \cdot C) B) \\  &= (A \cdot C)B - (B \cdot C)A \\  &= (C \cdot A)B - (B \cdot C)A + (A \cdot B)C - (A \cdot B)C \\  &= (C \cdot A)B - (B \cdot A)C + B \times (C \times A) \\  &= A \times (B \times C) + B \times (C \times A). \end{align*}

    Therefore,

        \[ (A \times B) \times C = A \times (B \times C) \iff B \times (C \times A) = O. \qquad \blacksquare\]

  4. Proof. From a previous exercise (Section 13.14, Exercise #7(d)) we know the identity A \cdot B \times C = C \cdot A \times B. In this case we have A \times B in place of A, C in place of B and D in place of C. This gives us

        \begin{align*}  (A \times B) \cdot (C \times D) &= D \cdot ((A \times B) \times C)\\  &= ((A \times B) \times C) \cdot D \\  &= (-C \times (A \times B)) \cdot D \\  &= (-(B \cdot C)A + (A \cdot C)B) \cdot D \\  &= (B \cdot D)(A \cdot C) - (B \cdot C)(A \cdot D). \qquad \blacksquare \end{align*}

Prove the “cab minus bac” formula

The “cab minus bac” formula is the vector identity

    \[ A \times (B \times C) = (C \cdot A)B - (B \cdot A)C. \]

Let B = (b_1, b_2, b_3) and C = (c_1, c_2, c_3). Prove that

    \[ \mathbf{i} \times (B \times C) = c_1 B - b_1 C. \]

This is the “cab minus bac” formula in the case A = \mathbf{i}. Prove similar formulas for the special cases A = \mathbf{j} and A = \mathbf{k}. Put these three results together to prove the formula in general.


Proof. For the case A = \mathbf{i} we have

    \begin{align*}  \mathbf{i} \times (B \times C) &= \mathbf{i} \times (b_2 c_3 - b_3 c_2, b_3 c_1 - b_1 c_3, b_1 c_2 - b_2 c_1) \\  &= (0, -b_1 c_2 + b_2 c_1, b_3 c_1 - b_1 c_3) \\  &= c_1 B - b_1 C. \end{align*}

Similarly, for A = \mathbf{j} and A = \mathbf{k} we have

    \begin{align*}  \mathbf{j} \times (B \times C) &= \mathbf{j} \times (b_2 c_3 - b_3 c_2, b_3 c_1 - b_1 c_3, b_1 c_2 - b_2 c_1) \\  &= (b_1 c_2 - b_2 c_1, 0, -b_2 c_3 + b_3 c_2) \\  &= c_2 B - b_2 C \\  \mathbf{k} \times (B \times C) &= \mathbf{k} \times (b_2 c_3 - b_3 c_2, b_3 c_1 - b_1 c_3, b_1 c_2 - b_2 c_1) \\  &= (-b_3 c_1 + b_1 c_3, b_2 c_3 - b_3 c_2, 0) \\  &= c_3 B - b_3 C. \end{align*}

So, if A = a_i \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} is any vector in \mathbb{R}^3 then we have

    \begin{align*}  A \times (B \times C) &= a_1 \mathbf{i} \times (B \times C) + a_2 \mathbf{j} \times (B \times C) + a_3 \mathbf{k} \times (B \times C) \\  &= a_1 (c_1 B - b_1 C) + a_2 (c_2 B - b_2 C) + a_3 (c_3 B - b_3 C) \\  &= (a_1 c_1 + a_2 c_2 + a_3 c_3) B - (a_1 b_1 + a_2 b_2 + a_3 b_3) C \\  &= (A \cdot C)B - (A \cdot B) C. \qquad \blacksquare \end{align*}

Prove an identity for the angle between vectors in Cn

The angle \theta between two vectors non-zero A, B \in \mathbb{C}^n is defined by the equation

    \[ \theta = \arccos \frac{\frac{1}{2}(A \cdot B + \overline{A \cdot B})}{\lVert A \rVert \lVert B \rVert}. \]

The inequality

    \[ -2 \leq \frac{A \cdot B + \overline{A \cdot B}}{\lVert A \rVert \lVert B \rVert} \leq 2 \]

we established in the previous exercise (Section 12.17, Exercise #6) show that there is a unique \theta \in [0, \pi] satisfying this equation. Prove that we have

    \[ \lVert A - B \rVert^2 = \lVert A \rVert^2 + \lVert B \rVert^2 - 2 \lVert A \rVert \lVert B \rVert \cos \theta. \]


Proof. From the definition of \theta we have

    \begin{align*}   && \theta &= \arccos \frac{\frac{1}{2} (A \cdot B + \overline{A \cdot B})}{\lVert A \rVert \lVert B \rVert} \\[9pt]  \implies && \cos \theta &= \frac{A \cdot B + \overline{A \cdot B}}{2 \lVert A \rVert \lVert B \rVert} \\[9pt]  \implies && 2 \lVert A \rVert \lVert B \rVert \cos \theta &= A \cdot B + \overline{A \cdot B}. \end{align*}

But then we know from this exercise (Section 12.17, Exercise #3) that

    \[ A \cdot B + \overline{A \cdot B} = \lVert A+B \rVert^2 - \lVert A \rVert^2 - \lVert B \rVert^2. \]

And, we know from this exercise (Section 12.17, Exercise #5) that

    \[ \lVert A+ B\rVert^2 = 2\lVert A \rVert^2 + 2 \lVert B \rVert^2 - \lVert A - B \rVert^2. \]

Therefore,

    \begin{align*}  && 2 \lVert A \rVert \lVert B \rVert \cos \theta &= \lVert A + B\rVert^2 - \lVert A \rVert^2 - \lVert B \rVert^2 \\  \implies && 2 \lVert A \rVert \lVert B \rVert \cos \theta &= 2 \lVert A \rVert^2 + 2 \lVert V \rVert^2  - \lVert A - B \rVert^2 - \lVert A \rVert^2 - \lVert B \rVert^2 \\[9pt]  \implies && \lVert A - B \rVert^2 &= \lVert A \rVert^2 + \lVert B \rVert^2 - 2 \lVert A \rVert \lVert B \rVert \cos \theta. \qquad \blacksquare \end{align*}

Prove an identity of given finite sums

Prove the identity:

    \[ \sum_{k=0}^n (-1)^k \binom{n}{k} \frac{1}{k+m+1} = \sum_{k=0}^m (-1)^k \binom{m}{k} \frac{1}{k+n+1}. \]


Proof. Using the hint (that \frac{1}{k+m+1} = \int_0^1 t^{k+m} \, dt) we start with the expression on the left,

    \begin{align*}  \sum_{k=0}^n (-1)^k \binom{n}{k} \frac{1}{k+m+1} &= \sum_{k=0}^n (-1)^k \binom{n}{k} \int_0^1 t^{m+k} \, dt \\[10pt]  &= \sum_{k=0}^n \int_0^1 (-1)^k \binom{n}{k} t^m t^k \, dt \\[10pt]  &= \int_0^1 \sum_{k=0}^n (-1)^k \binom{n}{k} t^m t^k \, dt &(\text{finite sum}) \\[10pt]  &= \int_0^1 t^m \sum_{k=0}^n \binom{n}{k} (-t)^k \, dt \\[10pt]  &= \int_0^1 t^m \sum_{k=0}^n \binom{n}{k} (-t)^k (1)^{n-k} \, dt \\[10pt]  &= \int_0^1 t^m (1-t)^n \, dt &(\text{Binomial theorem}). \end{align*}

(The interchange of the sum and integral is fine since it is a finite sum. Those planning to take analysis should note that this cannot always be done in the case of infinite sums.) Now, we have a reasonable integral, but we still want to get everything back into the form of the sum on the right so we make the substitution s = 1-t, ds = -dt. This gives us new limits of integration from 1 to 0. Therefore, we have

    \begin{align*}  \sum_{k=0}^n (-1)^k \binom{n}{k} \frac{1}{k+m+1} &= \int_0^1 t^m (1-t)^n \, dt \\[10pt]  &= -\int_1^0 (1-s)^m s^n \, ds \\[10pt]  &= \int_0^1 (1-s)^m s^n \, ds \\[10pt]  &= \int_0^1 s^n \sum_{k=0}^m \binom{m}{k} (-s)^k 1^{m-k} \, ds &(\text{Binomial theorem})\\[10pt]  &= \int_0^1 \sum_{k=0}^m \binom{m}{k} (-1)^k s^{k+n} \, ds \\[10pt]  &= \sum_{k=0}^m (-1)^k \binom{m}{k} \int_0^1 s^{k+n} \, ds \\[10pt]  &= \sum_{k=0}^m (-1)^k \binom{m}{k} \frac{1}{k+n+1}. \qquad \blacksquare \end{align*}