Home » e

Tag: e

Find an inverse for the function log |x|

Consider the function f(x) = \log |x| for x < 0. Prove that this function has an inverse, determine the domain of this inverse, and find a formula to compute the inverse g(y).


Proof. From the discussion on page 146 of Apostol we know that a function which is continuous and strictly monotonic on an interval [a,b] has an inverse on [a,b]. The function f(x) = \log |x| is continuous and strictly monotonic on the negative real axis; therefore, it has an inverse. We know it is continuous since the log function is continuous on the positive real axis, and |x| > 0 for all x, in particular, for all x < 0. Furthermore, we know it is strictly monotonic since

    \[ f'(x) = \frac{1}{x} < 0 \qquad \text{for all } x < 0. \]

Therefore, f(x) = \log |x| has an inverse for all x < 0. The domain of this inverse is the range of \log |x| which is all of \mathbb{R}. \qquad \blacksquare

To find a formula for the inverse we set

    \[ y = \log |x| \quad \implies \quad e^y = |x| \quad \implies \quad x = -e^y. \]

Therefore, g(y) = -e^y valid for all y \in \mathbb{R}.

A sketch for the graph of g is given by

Rendered by QuickLaTeX.com

Prove some inequalities of the exponential function

For n \in \mathbb{Z}_{>0} and for x \in \mathbb{R}_{>0} prove the following inequalities,

    \[ \left( 1 + \frac{x}{n} \right)^n < e^x, \qquad e^x < \left( 1 - \frac{x}{n} \right)^{-n}, \]

where we assume x < n in the second inequality. Use this to show

    \[ 2.5 < e < 2.99. \]


Proof. From the previous exercise (Section 6.17, Exercise #41) we know

    \[ e^x > 1 + x \]

for x > 0. But by assumption we have x > 0 and n> 0; hence, \frac{x}{n} > 0. Therefore this inequality must hold for \frac{x}{n}:

    \[ e^{\frac{x}{n}} > 1 + \frac{x}{n} \quad \implies \quad e^x > \left( 1  + \frac{x}{n} \right)^n. \]

Again, by the previous exercise we have

    \[ e^{-x} > 1 - x \]

for x > 0. Since x > 0 and n > 0 this implies \frac{x}{n} > 0. Therefore,

    \begin{align*}    e^{-\frac{x}{n}} > 1 - \frac{x}{n} && \implies && e^{-x} > \left( 1 - \frac{x}{n} \right)^n \\  && \implies && e^x < \left( 1 - \frac{x}{n} \right)^{-n}. \qquad \blacksquare \end{align*}

Letting n = 6, we have

    \[ \left( 1 + \frac{1}{6} \right)^6 = 2.52 < e < \left(1 - \frac{1}{6} \right)^{-6} = 2.99. \]

Prove some inequalities using the function ex-1-x

  1. Define a function:

        \[ f(x) = e^x - 1 - x \qquad \text{for all } x \in \mathbb{R}. \]

    Prove that f'(x) \geq 0 for all x \geq 0 and f'(x) \leq 0 for all x \leq 0. Prove the following inequalities are valid for all x > 0,

        \[ e^x > 1 + x, \qquad e^{-x} > 1 -x. \]

  2. Using integration and part (a) prove

        \[ e^x > 1 + x + \frac{x^2}{2!}, \qquad e^{-x} < 1 - x + \frac{x^2}{2!}. \]

  3. Using integration and part (a) prove

        \[ e^x > 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}, \qquad e^{-x} > 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!}. \]

  4. State and prove a generalization of the inequalities above.

  1. First, we take the derivative of f(x),

        \[ f'(x) = e^x - 1 \quad \implies \quad f'(0) = 0. \]

    Since e^x - 1 is strictly increasing everywhere (since f''(x) = e^x > 0 for all x) we have f'(x) \geq 0 for x \geq 0 and f'(x) \leq 0 for x \leq 0. Thus, f(x) has a minimum at x = 0 and f(0) = 0 so f(x) > 0 for all x \neq 0. Therefore, f(x) > 0 when x > 0; hence,

        \[ e^x -1 - x > 0 \quad \implies \quad e^x > 1 + x. \]

    Furthermore, when x < 0 we have

        \[ e^x - 1 - x > 0 \quad \implies \quad e^x > 1 + x. \]

    Therefore, if x > 0 then -x < 0 and so we have

        \[ e^{-x} > 1 - x. \]

  2. Using the inequalities in part (a) we integrate over the interval 0 to x,

        \begin{align*}  e^x > 1 + x && \implies && \int_0^x e^t \, dt > \int_0^x (1+t) \, dt \\  && \implies && e^x - 1> \left(t + \frac{t^2}{2}\right)\Bigr \rvert_0^x + C \\  && \implies && e^x - 1> x + \frac{x^2}{2!} \\  && \implies && e^x > 1 + x + \frac{x^2}{2!} \end{align*}

    For the other inequality we proceed similarly,

        \begin{align*}  e^{-x} > 1 - x && \implies && \int_0^x e^{-t} \, dt &> \int_0^x (1-t) \, dt \\  && \implies && -e^{-x} + 1 &> x - \frac{x^2}{2}\\  && \implies && e^{-x} &< 1 - x + \frac{x^2}{2!}. \qquad \blacksquare  \end{align*}

  3. We use the same strategy as before, starting with the inequalities we established in part (b),

        \begin{align*}  e^x > 1 + x + \frac{x^2}{2!} && \implies && \int_0^x e^t \, dt > \int_0^x \left (1 + t + \frac{t^2}{2!} \right) \, dt \\  && \implies && e^x - 1 > \left( t + \frac{t^2}{2!} + \frac{t^3}{3!}\right)\Bigr \rvert_0^x \\  && \implies && e^x > 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}. \end{align*}

    Similarly, for the other inequality,

        \begin{align*}  e^{-x} < 1 - x + \frac{x^2}{2!} && \implies && \int_0^x e^{-t} \, dt &< \int_0^x \left( 1 - t + \frac{t^2}{2!} \right) \, dt \\  && \implies && -e^{-x} + 1& < x - \frac{x^2}{2!} + \frac{x^3}{3!} \\  && \implies && e^{-x} &> 1 - x +\frac{x^2}{2!} - \frac{x^3}{3!}. \qquad \blacksquare \end{align*}

  4. Claim: The following general inequalities hold for all x > 0:

        \begin{align*}  e^x &> \sum_{k=0}^n \frac{x^k}{k!} & \text{for all } n \in \mathbb{Z}_{>0} \\ e^{-x} &> \sum_{k=0}^n (-1)^k \frac{x^k}{k!} & \text{for all odd } n \in \mathbb{Z}_{>0} \\ e^{-x} &< \sum_{k=0}^n (-1)^k \frac{x^k}{k!} & \text{for all even } n \in \mathbb{Z}_{>0}. \end{align*}

    Proof. The proof is by induction. We have already established the inequalities for the n = 1 case for all three inequalities. Now, to prove the first inequality assume

        \[ e^x > \sum_{k=0}^n \frac{x^k}{k!} \qquad \text{for some } n \in \mathbb{Z}_{>0}. \]

    Then we have

        \begin{align*}  && \int_0^x e^t \, dt &> \int_0^x \left( \sum_{k=0}^n \frac{t^k}{k!} \right) \, dt \\[9pt]  \implies && e^x - 1 &> \sum_{k=0}^n \int_0^x \frac{t^k}{k!} \, dt &(\text{linearity of integral}) \\[9pt]  \implies && e^x &> 1 + \sum_{k=0}^n \left( \frac{t^{k+1}}{(k+1)!} \right)\Bigr \rvert_0^x \\[9pt]  \implies && e^x &> 1 + \sum_{k=0}^n \frac{x^{k+1}}{(k+1)!} \\[9pt]  \implies && e^x &> 1 + \sum_{k=1}^{n+1} \frac{x^k}{k!} &(\text{Reindexing})\\  \implies && e^x &> \sum_{k=0}^{n+1} \frac{x^k}{k!}. \end{align*}

    This establishes the first inequality. For the second inequality we have proved the case n = 1 already. Assume

        \[ e^{-x} > \sum_{k=0}^n (-1)^k \frac{x^k}{k!} \qquad \text{for some odd } n \in \mathbb{Z}_{>0}. \]

    Since n is odd we may write n = 2m+1 for some nonnegative integer m. We want to show that the inequality must hold for the next odd integer, n+2. We have,

        \begin{align*}  &&\int_0^x e^{-t} \, dt&> \int_0^x \left( \sum_{k=0}^n (-1)^k \frac{t^k}{k!} \right) \, dt \\  \implies && -e^{-x} + 1 &> \sum_{k=0}^n (-1)^k \int_0^x \frac{t^k}{k!} \, dt \\  \implies && -e^{-x} &> -1 + \sum_{k=0}^n (-1)^k \frac{x^{k+1}}{(k+1)!} \\  \implies && e^{-x} &< 1 - \sum_{k=0}^n (-1)^k \frac{x^{k+1}}{(k+1)!} \\  \implies && e^{-x} &< 1 - \sum_{k=1}^{n+1} (-1)^{k-1} \frac{x^k}{k!} \\  \implies && e^{-x} &< 1 + \sum_{k=1}^{n+1} (-1)^k \frac{x^k}{k!} \\  \implies && e^{-x} &< \sum_{k=0}^{n+1} (-1)^k \frac{x^k}{k!} \\ \end{align*}

    We want to show that the inequality holds for n+2 so we integrate both sides again,

        \begin{align*}  && e^{-x} &< \sum_{k=0}^{n+1} (-1)^k \frac{x^k}{k!} \\  \implies && \int_0^x e^{-t} \, dt &< \int_0^x \left( \sum_{k=0}^{n+1} (-1)^k \frac{x^k}{k!} \right) \, dx \\  \implies && -e^{-x} + 1 &< \sum_{k=0}^{n+1} (-1)^k \int_0^x \frac{t^k}{k!} \, dt \\  \implies && -e^{-x} &< -1 + \sum_{k=0}^{n+1} (-1)^k \frac{x^{k+1}}{(k+1)!} + C \\  \implies && -e^{-x} &< -1 + \sum_{k=1}^{n+2} (-1)^{k-1} \frac{x^k}{k!} \\  \implies && e^{-x} &> 1 - \sum_{k=1}^{n+2} (-1)^{k-1} \frac{x^k}{k!} \\  \implies && e^{-x} &> 1 + \sum_{k=1}^{n+2} (-1)^k \frac{x^k}{k!} \\  \implies && e^{-x} &> \sum_{k=0}^{n+2} (-1)^k \frac{x^k}{k!}. \end{align*}

    Hence, if the inequality holds for odd n, then it also holds for the next odd number, n+2. Hence, it holds for all positive, odd integers.
    The exact same induction argument works for all of the even integers (starting with the n = 2 case we proved in part (c)). \qquad \blacksquare

Prove properties of a function satisfying a given functional equation

Assume f(x) is a function defined for all x \in \mathbb{R} such that

    \[ f(x+y) = f(x)f(y). \]

For parts (b)-(d) assume also that f(x) is differentiable for all real x (i.e., assume f'(x) exists everywhere).

  1. Using the given equation above, prove f(0) = 0 or f(0) = 1. Prove that if f(0) \neq 0 then f(x) \neq 0 for all x.
  2. Prove that f'(x)f(y) = f'(y)f(x) for all x,y.
  3. Prove that f'(x) = cf(x) for some constant c.
  4. Prove that if f(0) \neq 0 then f(x) = e^{cx}.

  1. Proof. Assume f(0) \neq 0. Then if a \in \mathbb{R} by the functional equation we have

        \[ f(a) f(0) = f(a+0) = f(a) \quad \implies \quad f(0) = 1. \]

    Therefore, if f(0) \neq 0 then we must have f(0) = 1. Hence, we have either f(0) = 0 or f(0) = 1.

    Furthermore, if f(0) \neq 0, then for any x \in \mathbb{R} by the functional equation we have

        \[ f(x) f(-x) = f(x+(-x)) = f(0) \neq 0. \]

    Hence, f(x) \neq 0 for any x \in \mathbb{R}. \qquad \blacksquare

  2. Proof. Since the derivative of f exists everywhere by hypothesis, we use the limit definition of the derivative and the functional equation f(x+y)=f(x)f(y) to write,

        \begin{align*}  f'(x)f(y) &= \left( \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right) f(y) \\  &= \lim_{h \to 0} \frac{f(y)f(x)f(h) - f(x)f(y)}{h} \\  &= \lim_{h \to 0} \frac{f(y+h)f(x) - f(y)f(x)}{h} \\  &= \left( \lim_{h \to 0} \frac{f(y+h) - f(y)}{h} \right) f(x) \\  &= f'(y) f(x). \qquad \blacksquare \end{align*}

  3. Proof. First, if f(0) = 0 then by the functional equation we know for any x \in \mathbb{R} we have

        \[ f(x) = f(x+0) = f(x)f(0) = 0. \]

    So, if f(0) = 0 then f(x) is the constant function which is 0 everywhere. Hence, f'(x) = 0 = cf(x) for all x.
    Next, we consider the case that f(0) = 1. Since f'(x) exists for all x we use the definition of derivative and the functional equation again to write,

        \begin{align*}  f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\  &= \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h} \\  &= \lim_{h \to 0} \frac{f(x)(f(h) - 1)}{h} \\  &= f(x) \lim_{h \to 0} \frac{f(h) - 1}{h} \\  &= f(x) \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} \\  &= f(x) f'(0) \\  &= cf(x). \end{align*}

    The final line follows since f'(0) exists by assumption so we can write c = f'(0) for some c. \qquad \blacksquare

  4. Proof. Since f'(x) = cf(x) (by part (c)) we know, by the previous exercise (Section 6.17, Exercise #39) that f(x) = Ke^{cx} for some constant K. Since f(0) \neq 0 by assumption, we know by part (a) that f(0) = 1. Hence,

        \[ f(0) = Ke^{c\cdot 0} = K = 1 \quad \implies \quad f(x) = e^{cx}. \qquad \blacksquare \]