Home » Difference Quotient

Tag: Difference Quotient

Determine whether given statements about a function differentiable at a point are true or false

Let f be a function and a a point such that f'(a) exists. Determine which of the following are true or false.

  1. \displaystyle{f'(a) = \lim_{h \to a} \frac{f(h) - f(a)}{h-a}}.
  2. \displaystyle{f'(a) = \lim_{h \to 0} \frac{f(a) - f(a -h)}{h}}.
  3. \displaystyle{ f'(a) = \lim_{t \to 0} \frac{f(a+2t) - f(a)}{t}}.
  4. \displaystyle{ f'(a) = \lim_{t \to 0} \frac{f(a+2t) - f(a+t)}{2t}}.

  1. True. Let k = h-a. Then k \to 0 as (h-a) \to 0 implies k \to 0 as h \to a. Thus,

        \[ f'(a) = \lim_{k \to 0} \frac{f(a+k) - f(a)}{k} = \lim_{h \to a} \frac{f(a+h-a) - f(a)}{h-a} = \lim_{h \to a} \frac{f(h) - f(a)}{h-a}. \qquad \blacksquare \]

  2. True. Let k = -h, then

        \[ \lim_{h \to 0} \frac{f(a) - f(a-h)}{h} = \lim_{k \to 0} \frac{f(a) - f(a+k)}{-k} = \lim_{k \to 0} \frac{f(a+k) - f(a)}{k} = f'(a). \qquad \blacksquare \]

  3. False. First, from the definition of limit we can conclude

        \[ \lim_{t \to 0} f(t) = \lim_{2t \to 0} f(t) \]

    (by taking \delta' = \frac{\delta}{2}). Then we have,

        \begin{align*}  \lim_{t \to 0} \frac{f(a+2t) - f(a)}{t} &= \lim_{2t \to 0} \frac{f(a+2t) - f(a)}{t} \\  &= 2 \lim_{2t \to 0} \frac{f(a+2t) - f(a)}{2t} \\  &= 2 f'(a) \neq f'(a) & \text{if } f'(a) \neq 0. \end{align*}

    Thus, this is not true in general (since there are many function differentiable at a point a such that the derivative at that point is nonzero). ( Note: This statement would be true were the denominator in the given equation 2t instead of t.)

  4. False. Here we evaluate,

        \begin{align*}  \lim_{t \to 0} \frac{f(a+2t) - f(a+t)}{2t} &= \frac{1}{2} \left( \lim_{t \to 0} \frac{f(a+2t)-f(a)}{t} - \lim_{t \to 0} \frac{f(a+t) - f(a)}{t} \right) \\  &= \frac{1}{2} ( 2f'(a) - f'(a)) \qquad (\text{part (c)})\\  &= \frac{1}{2} f'(a) \neq f'(a) \qquad \text{if } f'(a) \neq 0. \end{align*}

Find values of constants so that the derivative of a function exists

Consider the function f defined by

    \[ f(x) = \begin{cases} \sin x & \text{if } x \leq c, \\ ax+b & \text{if } x > c. \end{cases} \]

Find values for the constants a and b such that the derivative f'(c) exists.


We know that f'(c) exists if and only if

    \[ \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \]

exists. This limit exists if and only if the two one-sided limits exits and are equal:

    \[ \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h}. \]

Using the definition of f, we then evaluate these limits,

    \begin{align*}  && \lim_{h \to 0^+} \frac{a(c+h)+ b - \sin c}{h} &= \lim_{h \to 0^-} \frac{\sin (c+h) - \sin c}{h} \\ \implies && \lim_{h \to 0^+} \left(\frac{ac+b- \sin c}{h}\right) + a &= \lim_{h \to 0^-} \frac{\sin c \cos h + \sin  h \cos c - \sin c}{h} \\ \implies && \lim_{ h \to 0^+} \left(\frac{ac+b - \sin c}{h}\right) + a &= \lim_{h \to 0^-}\left( \frac{\sin c \cdot \left( \cos h - 1 \right)}{h} \right) + \cos c. \end{align*}

In simplifying the right hand side we used that \lim_{h \to 0} \frac{\sin h}{h} = 1. Furthermore, for the limit on the left to exist we must have ac+b - \sin c = 0 (otherwise the limit will diverge as h \to 0). Now for the expression on the right, we claim the limit in the expression is 0. We can see this because

    \begin{align*}  \lim_{h \to 0^-} \frac{\sin c (\cos h - 1)}{h} &= \sin c \lim_{h \to 0^-} \frac{\cos h - 1}{h} \\  &= \sin c \lim_{h \to 0^-} \frac{\cos (0 + h) - \cos 0}{h} \end{align*}

But this limit is the derivative of \cos x at x = 0. Since (\cos x)' = -\sin x and \sin 0 = 0, this term is indeed 0.
So, coming back to our original equations we then have,

    \[ \lim_{ h \to 0^+} \left(\frac{ac+b - \sin c}{h}\right) + a &= \lim_{h \to 0^-}\left( \frac{\sin \left( \cos h - 1 \right)}{h} \right) + \cos c \quad \implies \quad a = \cos c. \]

Furthermore, since we already established that ac + b - \sin c = 0 we have,

    \[ b = \sin c - c \cos c. \]

Therefore, the expressions for a and b we are asked to find are,

    \[ a = \cos c, \qquad b = \sin c - c \cos c. \]

Find values of constants so that the derivative of a function exists

Consider the function f defined by

    \[ f(x) = \begin{cases} \frac{1}{|x|} & \text{if } |x| > c, \\ a+bx^2 & \text{if } |x| \leq c. \end{cases} \]

Find values for the constants a and b such that the derivative f'(c) exists.


First, let’s assume c > 0 otherwise f(x) = \frac{1}{|x|} everywhere and the values of a and b are arbitrary (since the value of f does not depend on them).

Then, f'(c) exists implies the one-sided limits exist and are equal:

    \[ \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h}. \]

Using the definition of f we plug in the expressions for f when approaches from the left and from the right,

    \begin{align*}   &&\lim_{h \to 0^+} \frac{\frac{1}{c+h} - a - bc^2}{h} &= \lim_{h \to 0^-} \frac{a+b(c+h)^2 - a - bc^2}{h} \\ \implies && \lim_{h \to 0^+} \frac{1-(a+bc^2)(c+h)}{h(c+h)} &= 2bc \\ \implies && \lim_{h \to 0^+} \frac{1 - ac - ah - bc^3 - bc^2h}{h(c+h)} &= 2bc \\ \implies && \lim_{h \to 0^+} \left( \frac{1 - ac - bc^3}{h(c+h)} \right) - \frac{a+bc^2}{c} &= 2bc. \end{align*}

The limit on the left exists if and only if 1-ac -bc^3 = 0 (otherwise the limit diverges to infinity has h \to 0). In this case the limit is 0, and we have two equations,

    \[ 1 - ac - bc^3 = 0 \qquad \text{and} \qquad - \frac{a + bc^2}{c} = 2bc. \]

Using the equation on the right we have, a = -3bc^2. Then plugging this value into the equation on the left we obtain

    \[ 1 + 3bc^3 - bc^3 = 0 \quad \implies \quad b = - \frac{1}{2c^3}. \]

Finally, using this in our expression a = -3bc^2 we solve for a in terms of c alone, a = \frac{3}{2c}. Therefore,

    \[ a = \frac{3}{2c}, \qquad b = - \frac{1}{2c^3}. \]

Find values of constants so that the derivative of a function exists

Consider the function f defined by

    \[ f(x) = \begin{cases} x^2 & \text{if } x \leq c, \\ ax+b & \text{if } x > c. \end{cases} \]

Find values for the constants a and b such that the derivative f'(c) exists.


We know that the derivative f'(c) exists if and only if

    \[ \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \]

exists. Furthermore, this limit exists if and only if the one-sided limits both exist and are equal:

    \[ \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h}. \]

So, plugging in the formula for f (which is ax + b if we approach c from the right, and is x^2 if we approach from the left, and noting that f(c) = c^2 from the definition of f) we have,

    \begin{align*}  &&\lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} &= \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \\ \implies && \lim_{h \to 0^+} \frac{a(c+h) + b - c^2}{h} &= \lim_{h \to 0^-} \frac{(c+h)^2 - c^2}{h} \\  \implies && \lim_{h \to 0^+} \frac{ac + b - c^2}{h} + a &= 2c. \end{align*}

For the limit on the left to exist we must have ac + b - c^2 = 0 (otherwise the limit will diverge as h \to 0). Furthermore, this limit must be 0 since ac  +b - c^2 is a constant (and the limit of 0/h as h \to 0 is 0). Therefore, we have a = 2c, and we have the equation

    \[ ac + b - c^2 = 0 \quad \implies \quad 2c^2 + b - c^2 = 0 \quad \implies \quad b = -c^2. \]

Therefore, a = 2c and b = -c^2 are the values of the requested constants in terms of c.