Home » Derivatives » Page 4

Tag: Derivatives

Prove that arccot x – arctan (1/x) is not constant but has zero derivative

  1. Prove that for x \neq 0 we have

        \[ D \left( \operatorname{arccot} x - \arctan \frac{1}{x} \right) = 0. \]

  2. Prove that there is no constant C \in \mathbb{R} such that for all x \neq 0 we have

        \[ \operatorname{arccot} x - \arctan \frac{1}{x} = C. \]

    Why is this not a violation of the zero-derivative theorem (Theorem 5.2 in Apostol)?


  1. Proof. We can use the formulas for the derivatives of \operatorname{arccot} x and \arctan x (and the chain rule) to compute,

        \begin{align*}  D \left( \operatorname{arccot} x - \arctan \frac{1}{x} \right) &= -\frac{1}{1+x^2} - \left( \frac{1}{1+\left( \frac{1}{x} \right)^2} \right) \left(\frac{-1}{x^2}\right) \\[9pt]  &= \frac{-1}{1+x^2} + \frac{1}{1+x^2} \\[9pt]  &= 0. \qquad \blacksquare \end{align*}

  2. Proof. First, let x = -1. Then,

        \[ \arctan x = \arctan \frac{1}{x} = \arctan(-1) = -\frac{\pi}{4}. \]

    Then, since \operatorname{arccot} x = \frac{\pi}{2} - \arctan x, we have

        \[ \operatorname{arccot} x - \arctan \frac{1}{x} = \frac{\pi}{2} - \arctan x - \arctan \frac{1}{x} = \frac{\pi}{2} + \frac{\pi}{4} + \frac{\pi}{4} = \pi. \]

    Next, let x = 1. Then, \arctan x = \arctan \frac{1}{x} = \arctan 1 = \frac{\pi}{4}. Again, using that \operatorname{arccot} x = \frac{\pi}{2} - \arctan x, we have

        \[ \operatorname{arccot} x - \arctan \frac{1}{x} = \frac{\pi}{2} - \frac{\pi}{4} - \frac{\pi}{4} = 0. \]

    Hence, there is no constant C such that \operatorname{arccot} x - \arctan \frac{1}{x} = C for all x \neq 0. \qquad \blacksquare

    This is not a violation of the zero-derivative theorem since the function \operatorname{arccot} x - \arctan \frac{1}{x} is constant on every open interval on which it is defined. Since it isn’t defined at x = 0, any open subinterval must be a subinterval of only positive or only negative reals. The function is constant on any of these subintervals.

Establish the formula for the derivative of arccos x

Establish the following formula for the derivative of \arccos x is correct,

    \[ D(\arccos x) = \frac{-1}{\sqrt{1-x^2}}, \qquad \text{if } -1<x<1. \]


For -1<x<1 let

    \[ y = \arccos x \quad \implies \quad x = \cos y. \]

Then we know

    \[ \frac{dx}{dy} = -\sin y. \]

Therefore, by Theorem 6.7 (p. 252 of Apostol) we have,

    \begin{align*}  \frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} && \implies && -\sin y &= \frac{1}{\frac{dy}{dx}} \\  && \implies && \frac{dy}{dx} &= \frac{-1}{\sin y} \\  && \implies && D(\arccos x) &= \frac{-1}{\sin y}. \end{align*}

Using the pythagorean identity for sine and cosine we have

    \begin{align*}  \sin^2 y + \cos^2 y =1 && \implies && \sin y &= \pm \sqrt{1-\cos^2 y} \\  && \implies && \sin y &= \pm \sqrt{1-x^2} \end{align*}

since x = \cos y. Furthermore, since \sin y \geq 0 on the range of \arccos x (i.e., \sin y \ge 0 for y \in [0, \pi]) we must take the positive square root. Therefore we conclude,

    \[ D(\arccos x) = \frac{-1}{\sqrt{1-x^2}}.\]