Home » Absolute Values

Tag: Absolute Values

Compute the modulus and principal argument of given complex numbers

For each of the following complex numbers, compute the modulus and principal argument.

  1. 2i.
  2. -3i.
  3. -1.
  4. 1.
  5. -3 + \sqrt{3}i.
  6. \frac{1+i}{\sqrt{2}}.
  7. (-1+i)^3.
  8. (-1-i)^3.
  9. \frac{1}{1+i}.
  10. \frac{1}{(1+i)^2}.

  1. First, the modulus is given by

        \[ |2i| = \sqrt{2^2} = 2. \]

    The principal argument is the unique \theta \in (-\pi, pi] such that

        \[ x = r \cos \theta, \qquad y = r \sin \theta. \]

    In this case we have x = 0, y = 2 and r = \sqrt{2} so the principal argument satisfies

        \[ 2 \cos \theta = 0, \ \  2 \sin \theta = 2 \qquad \implies \qquad \theta = \frac{\pi}{2}. \]

  2. First, the modulus is given by

        \[ |-3i| = \sqrt{(-3)^2} = 3. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \[ 3 \cos \theta = 0, \ \ 3 \sin \theta = -3 \qquad \implies \qquad \theta = -\frac{\pi}{2}. \]

  3. The modulus is given by

        \[ |-1| = \sqrt{(-1)^2} = 1. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \[ \cos \theta = -1, \ \ \sin \theta = 0 \qquad \implies \qquad \theta = \pi. \]

  4. The modulus is given by

        \[ |1| = \sqrt{1^2} = 1. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \[ \cos \theta = 1, \ \ \sin \theta = 0 \qquad \implies \qquad \theta = 0. \]

  5. The modulus is given by

        \[ |-3+\sqrt{3}i| = \sqrt{(-3)^2 + \sqrt{3}^2} = \sqrt{12} = 2 \sqrt{3}. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \begin{align*}  && 2 \sqrt{3} \cos \theta &= -3 & \text{and} && 2 \sqrt{3} \sin \theta &= \sqrt{3} \\  \implies && \cos \theta &= -\frac{\sqrt{3}}{2} & \text{and} && \sin \theta &= \frac{1}{2} \\  \implies && \theta &= \frac{5 \pi}{6}.  \end{align*}

  6. The modulus is given by

        \[ \left| \frac{1 + i}{\sqrt{2}} \right| = \sqrt{\left( \frac{1}{\sqrt{2}} \right)^2 + \left( \frac{1}{\sqrt{2}} \right)^2} = \sqrt{1} = 1. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \[ \cos \theta = \frac{1}{\sqrt{2}}, \ \ \sin \theta = \frac{1}{\sqrt{2}} \qquad \implies \qquad \theta = \frac{\pi}{4}. \]

  7. First, we write (-1+i)^3 in the form a+bi,

        \[ (-1+i)^3 = 2 + 2i. \]

    Therefore, the modulus is

        \[ |(-1+i)^3| = |2+2i| = \sqrt{2^2 + 2^2} = 2\sqrt{2}. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \begin{align*}  && 2 \sqrt{2} \cos \theta &= 2 & \text{and} && 2 \sqrt{2} \sin \theta &= 2 \\  \implies && \cos \theta &= \frac{1}{\sqrt{2}} & \text{and} && \sin \theta &= \frac{1}{\sqrt{2}} \\  \implies && \theta &= \frac{\pi}{4}. \end{align*}

  8. First, we rewrite (-1-i)^3 in the form a+bi,

        \[ (-1-i)^3 = (-1-i)(-1-i)(-1-i) = (2i)(-1-i) = 2 - 2i. \]

    Therefore, the modulus is

        \[ |(-1-i)^3| = |2 - 2i| = \sqrt{2^2 + (-2)^2} = 2 \sqrt{2}. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \begin{align*}  && 2 \sqrt{2} \cos \theta &= 2 & \text{and} && 2 \sqrt{2} \sin \theta &= -2 \\  \implies && \cos \theta &= \frac{1}{\sqrt{2}} & \text{and} && \sin \theta &= -\frac{1}{\sqrt{2}} \\  \implies && \theta &= -\frac{\pi}{4}. \end{align*}

  9. First, we rewrite \frac{1}{1+i} in the form a+bi,

        \[ \frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{2} = \frac{1}{2} - \frac{1}{2}i. \]

    Therefore, the modulus is

        \[ \left| \frac{1}{1+i} \right| = \left|\frac{1}{2} - \frac{1}{2}i \right| = \sqrt{\left( \frac{1}{2} \right)^2 + \left(\frac{-1}{2}\right)^2} = \frac{1}{\sqrt{2}}. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \begin{align*}  && \frac{1}{\sqrt{2}} \cos \theta &= \frac{1}{2} & \text{and} && \frac{1}{\sqrt{2}} \sin \theta &= -\frac{1}{2} \\  \implies && \cos \theta &= \frac{1}{\sqrt{2}} & \text{and} && \sin \theta &= -\frac{1}{\sqrt{2}} \\  \implies && \theta &= -\frac{\pi}{4}.  \end{align*}

  10. First, we rewrite \frac{1}{(1+i)^2} in the form a+bi,

        \[ \frac{1}{(1+i)^2} = \frac{1}{2i} = -\frac{1}{2}i . \]

    The modulus is

        \[ \left| \frac{1}{(1+i)^2} \right| = \left| \frac{-1}{2}i\right| = \sqrt{\left( \frac{-1}{2} \right)^2} = \frac{1}{2}. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \[ \frac{1}{2} \cos \theta = 0, \ \ \frac{1}{2} \sin \theta = -\frac{1}{2} \qquad \implies \qquad \theta = -\frac{\pi}{2}. \]

Compute the absolute values of given complex numbers

For each of the following complex numbers, compute the absolute value.

  1. 1+i.
  2. 3 + 4i.
  3. \frac{1+i}{1-i}.
  4. 1+i+i^2.
  5. i^7 + i^{10}.
  6. 2(1-i) + 3(2+i).

  1. Using the formula for the absolute value of a complex number we compute,

        \[ |1+i| = \sqrt{1^2 + 1^2} = \sqrt{2}. \]

  2. Using the formula for the absolute value of a complex number we compute,

        \[ |3+4i| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5. \]

  3. Using the fact that \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} and the formula for the absolute value of a complex number we have,

        \[ \left| \frac{1+i}{1-i} \right| = \frac{|1+i|}{|1-i|} = \frac{\sqrt{2}}{\sqrt{2}} = 1. \]

  4. Using i^2 = -1 and the formula for the absolute value of a complex number we have

        \[ |1 + i + i^2| = |i| = \sqrt{1^2} = 1. \]

  5. Using that i^4 = 1 we have

        \[ |i^7 + i^{10}| = |i^3 + i^2| = |-1 - i| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}. \]

  6. We compute,

        \[ |2(1-i) + 3(2+i)| = |2 - 2i + 6 + 3i| = |8 + i| = \sqrt{8^2 + 1^2} = \sqrt{65}. \]

Compute the integral from 0 to x of f(t) for the given functions

Find a formula to compute

    \[ F(x) = \int_0^x f(t) \, dt \]

for all x \in \mathbb{R} for the following function f(t).

  1. \displaystyle{f(t) = (t + |t|)^2}.
  2. The function,

        \[ f(t) = \begin{cases} 1-t^2 & \text{if } |t| \leq 1, \\ 1 - |t| & \text{if } |t| > 1. \end{cases} \]

  3. f(t) = e^{-|t|}.
  4. f(t) = the maximum of 1 and t^2.

  1. We know from this exercise (Section 5.5, Exercise #13) that

        \[ F(x) = \int_0^x (t + |t|)^2 \, dt = \frac{2}{3} x^2 (x + |x|). \]

  2. If \abs{x} \leq 1, then f(t) = 1-t^2 over the whole integral, and so

        \[ F(x) = \int_0^x f(t) \, dt = \int_0^x (1-t^2) \, dt = \left( t - \frac{t^3}{3} \right) \Bigr \rvert_0^x  = x - \frac{x^3}{3}. \]

    Then, if x > 1 we have

        \begin{align*}   F(x) &= \int_0^x f(t) \, dt \\[9pt]  &= \int_0^1 (1-t^2) \, dt + \int_1^x 1-t \, dt \\[9pt]  &= \left( t - \frac{t^3}{3} \right) \Bigr \rvert_0^1 + \left( t - \frac{t^2}{2} \right) \Bigr \rvert_1^x \\[9pt]  &= \frac{2}{3} + x - \frac{x^2}{2} - \frac{1}{2} \\[9pt]  &= x - \frac{1}{2} x|x| + \frac{|x|}{x} \frac{1}{6}. \end{align*}

    (Since x > 1 we have \frac{|x|}{x} = 1 so this equation works. This is the form Apostol wrote these answers as in the back of the book, so I’m getting our answers to match his. I wouldn’t have written them this way otherwise.)

    Finally, if x < -1 we have

        \begin{align*}  F(x) &= \int_0^x f(t) \, dt \\[9pt]  &= \int_0^{-1} (1-t^2) \, dt + \int_{-1}^x (1+t) \, dt \\[9pt]  &= \left( t - \frac{t^3}{3} \right) \Bigr \rvert_0^{-1} + \left( t + \frac{t^2}{2} \right) \Bigr \rvert_{-1}^x \\[9pt]  &= -\frac{2}{3} + x + \frac{x^2}{2} + \frac{1}{2} \\[9pt]  &= x + \frac{1}{2} x|x| + \frac{|x|}{x} \frac{1}{6}. \end{align*}

    Since the formulas for F(x) are the same for x < -1 and x > 1 are the same we have

        \[ F(x) = x + \frac{1}{2} x|x| + \frac{|x|}{x} \frac{1}{6} \]

    for |x| > 1.

  3. We consider two cases. If x \geq 0 then

        \[ F(x) = \int_0^x e^{-|t|} \, dt = \int_0^x e^{-t} \, dt = -e^{-t} \Bigr \rvert_0^x = 1-e^{-x}. \]

    If x < 0 then

        \[ F(x) = \int_0^x e^{-|t|} \, dt = \int_0^x e^t \, dt = e^x - 1. \]

  4. Since the maximum of 1 and t^2 is equal to 1 if |t| \leq 1 and is equal to t^2 if |t| > 1 we consider three cases (|x| \leq 1, x > 1 and x < -1).

    For |x| \leq 1 we have

        \[ F(x) = \int_0^x f(t) \, dt = \int_0^x dt = x. \]

    For x > 1 we have

        \[ F(x) = \int_0^1 dt + \int_1^x t^2 \, dt = 1 + \frac{t^3}{3}\Bigr \rvert_1^x = \frac{x^3}{3} + \frac{2}{3} = \frac{x^3}{3} + \frac{|x|}{x} \frac{2}{3} \]

    For x < -1 we have

        \[ F(x) = \int_0^{-1} dt + \int_{-1}^x t^2 \, dt = -1 + \frac{t^3}{3} \Bigr \rvert_{-1}^x = +\frac{x^3}{3} + \frac{|x|}{x} \frac{2}{3}. \]

Prove some continuity properties of a function

Given a function f and a closed interval [a,b] such that

    \[ |f(u) - f(v)| \leq |u-v| \]

for all u,v \in [a,b].

  1. Prove f is continuous at every point x \in [a,b].
  2. If f is integrable on [a,b] prove

        \[ \left| \int_a^b f(x) \, dx - (b-a)f(a) \right| \leq \frac{(b-a)^2}{2}. \]

  3. If c \in [a,b] is any point prove

        \[ \left| \int_a^b f(x) \, dx - (b-a) f(c) \right| \leq \frac{(b-a)^2}{2}. \]


  1. Proof. Let p be any point in [a,b]. Then, for any \varepsilon > 0 let \delta = \varepsilon. Then

        \begin{align*}   |x-p| < \delta &&\implies && |x-p| &< \varepsilon \\  && \implies && |f(x) - f(p)| &< \varepsilon. \end{align*}

    Thus, for any \varepsilon > 0, we have |f(x) - f(p)| < \varepsilon whenever |x-p| < \delta. Hence,

        \[ \lim_{x \to p} f(x) = f(p). \]

    Therefore, f is continuous at every point p \in [a,b]. \qquad \blacksquare

  2. Proof. Since f(a) is a constant (the value of the function f evaluated at the constant a), we have

        \[ (b-a) f(a) = \int_a^b f(a) \, dx. \]

    Therefore, we can compute,

        \begin{align*}  \left| \int_a^b f(x) \, dx - (b-a) f(a) \right| &= \left| \int_a^b f(x) \, dx - \int_a^b f(a) \, dx \right| \\  &= \left| \int_a^b (f(x) - f(a)) \, dx \right|\\  &\leq \int_a^b |f(x) - f(a)| \, dx. \end{align*}

    The final inequality follows since, using the monotone property of the integral,

        \begin{align*}  - |f(x)| \leq f(x) \leq |f(x)| && \implies && \int_a^b -|f(x)| \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b |f(x)| \, dx \\  && \implies && - \int_a^b |f(x)| \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b |f(x)| \, dx \\  && \implies && \left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx. \end{align*}

    Then, since |f(x) - f(a)| \leq |x-a| by our hypothesis on f, we have

        \begin{align*}  \int_a^b |f(x) - f(a)| \, dx &\leq \int_a^b |x-a| \, dx \\  &= \int_a^b (x-a) \, dx &(x-a\geq 0 \text{ since } x \in [a,b]) \\  &= \frac{b^2}{2} - \frac{a^2}{2} - ab + a^2 \\  &= \frac{b^2-2ab+a^2}{2} \\  & = \frac{(b-a)^2}{2}. \qquad \blacksquare \end{align*}

  3. Proof. The proof proceeds similarly to that of part (b),

        \begin{align*}  \left| \int_a^b f(x) \, dx - (b-a) f(c) \right| &= \left| \int_a^b f(x) \, dx - \int_a^b f(c) \, dx \right|\\ &= \left| \int_a^b (f(x) - f(c)) \, dx \right| \\ &\leq \int_a^b | f(x) - f(c) | \, dx \\ &\leq \int_a^b |x-c| \, dx. \end{align*}

    Then, since c \in [a,b], we break the integral into two pieces (to deal with the fact that |x-c| = -(x-c) for x < c and |x-c| = x-c for x \geq c):

        \begin{align*}   \int_a^b |x-c| \, dx &= \int_a^c -(x-c) \, dx + \int_c^b (x-c) \, dx \\  &= \left. -\frac{x^2}{2} \right|_a^c + c \cdot x \biggr \rvert_a^c + \left. \frac{x^2}{2} \right|_c^b - c \cdot x \biggr \rvert_c^b \\  &= \frac{a^2-c^2}{2} + c(c-a) + \frac{b^2-c^2}{2} - c(b-c) \\  &= \frac{a^2 - 2c^2 + b^2}{2} + 2c^2-ac-bc \\  &= \frac{a^2+b^2}{2} + c^2 - c(b+a). \end{align*}

    But now, we know c \in [a,b] implies c \leq b, so we have the inequality,

        \begin{align*}    \frac{a^2+b^2}{2} + c^2 - c(b+a) &= \frac{a^2+b^2}{2} + c(c-(b+a)) \\  &\leq \frac{b^2+a^2}{2} + b(b-b-a) \\  &= \frac{b^2+a^2}{2} - ab \\  &= \frac{b^2 - 2ab + a^2}{2} \\  &= \frac{(b-a)^2}{2}. \qquad \blacksquare \end{align*}