Home » Blog » Prove a property of limits of vector valued functions

Prove a property of limits of vector valued functions

Prove that

    \[ \lim_{t \to p} F(t) = A \iff \lim_{t \to p} \lVert F(t) - A \rVert = 0. \]


Proof. Let

    \[ F(t) = (f_1(t), \ldots, f_n(t)), \qquad \text{and} \qquad A = (a_1, \ldots, a_n). \]

Then,

    \begin{align*}  \lim_{t \to p} F(t) = A && \iff && \lim_{t \to p} (f_1(t), \ldots, f_n (t)) &= (a_1, \ldots, a_n) \\  && \iff && \left( \lim_{t \to p} f_1(t), \ldots, \lim_{t \to p} f_n (t) \right) &= (a_1, \ldots, a_n). \end{align*}

This holds if and only if

    \[ \lim_{t \to p} f_i (t) = a_i \qquad \text{for } i = 1, \ldots, n. \]

From the usual limit this is true if and only if

    \[ \lim_{t \to p} | f_i (t) - a_i | = 0 \qquad \text{for } i = 1, \ldots, n. \]

This is if and only if

    \begin{align*}  &&\left( \lim_{t \to p} |f_1 (t) - a|, \ldots, \lim_{t \to p} |f_n (t) - a| \right) &= (0, \ldots, 0) \\  \iff && \lim_{t \to p} |F(t) - A| = 0. \qquad \blacksquare \end{align*}

One comment

  1. S says:

    The problem statement is for the norm of the vector, not its absolute value. However, it’s just another iff that cab be easily proven when going to the limit definition.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):