Home » Blog » Solve a system of equations using Cramer’s rule

Solve a system of equations using Cramer’s rule

Use Cramer’s rule to solve the system of equations:

    \begin{align*}  x + y + 2z &= 4, \\  3x - y - z &= 2, \\  2x + 5y + 3z &= 3. \end{align*}


From Cramer’s rule we have,

    \begin{align*}  x &= \frac{ \begin{vmatrix*}[r] 4 & 1 & 2 \\ 2 & -1 & -1 \\ 3 & 5 & 3 \end{vmatrix*} }{ \begin{vmatrix*}[r] 1 & 1 & 2 \\ 3 & -1 & -1 \\ 2 & 5 & 3 \end{vmatrix*} } = \frac{25}{25} = 1, \\[10pt]  y &= \frac{ \begin{vmatrix*}[r] 1 & 4 & 2 \\ 3 & 2 & -1 \\ 2 & 3 & 3 \end{vmatrix*} }{ \begin{vmatrix*}[r] 1 & 1 & 2 \\ 3 & -1 & -1 \\ 2 & 5 & 3 \end{vmatrix*} } = \frac{-25}{25} = -1, \\[10pt]  z &= \frac{ \begin{vmatrix*}[r] 1 & 1 & 4 \\ 3 & -1 & 2 \\ 2 & 5 & 3 \end{vmatrix*} }{ \begin{vmatrix*}[r] 1 & 1 & 2 \\ 3 & -1 & -1 \\ 2 & 5 & 3  \end{vmatrix*} } = \frac{50}{25} = 2. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):