Home » Blog » Give a vector based proof of Heron’s formula for computing the area of a triangle

Give a vector based proof of Heron’s formula for computing the area of a triangle

Let S denote the area of a triangle with sides of lengths a,b,c. Heron’s formula states that

    \[ S = \sqrt{s (s-a)(s-b)(s-c)}, \qquad \text{where} \qquad s = \frac{a+b+c}{2}. \]

We prove this formula using vectors via the following steps. Assume the triangle has vertices O,A, and B with

    \[ \lVert A \rVert = a, \qquad \lVert B \rVert = b, \qquad \lVert B - A \rVert = c. \]

  1. Using the identities

        \[ \lVert A \times B \rVert^2 = \lVert A \rVert^2 \lVert B \rVert^2 - (A \cdot B)^2, \qquad -2A \cdot B = \lVert A-B \rVert^2 - \lVert A \rVert^2 - \lVert B \rVert^2 \]

    prove the formula

        \[ 4S^2 = a^2 b^2 - \frac{1}{4} (c^2 - a^2 - b^2)^2 = \frac{1}{4} (2ab - c^2 + a^2 + b^2)(2ab + c^2 - a^2 - b^2). \]

  2. Simplify the formula in part (a) to obtain the formula

        \[ S^2 = \frac{1}{16}(a+b+c)(a+b-c)(c-a+b)(c+a-b), \]

    and use this to deduce Heron’s formula.


  1. Proof. We know the area of the triangle (in terms of the vectors A and B) is

        \[ S = \frac{1}{2} \lVert A \times B \rVert. \]

    Therefore,

        \begin{align*}  4S^2 &= \lVert A \times B \rVert^2 \\  &= \lVert A \rVert^2 \lVert B \rVert^2 - (A \cdot B)^2 \\  &= a^2 b^2 - \frac{1}{4} ( \lVert A-B \rVert^2 - \lVert A \rVert^2 - \lVert B \rVert^2 ) \\  &= a^2 b^2 - \frac{1}{4} (c^2 - a^2 - b^2)^2 \\  &= \frac{1}{4} (4a^2 b^2 - (c^2 - a^2 - b^2)^2) \\  &= \frac{1}{4} (2ab - (c^2 - a^2 - b^2))(2ab + (c^2 - a^2 - b^2)) \\  &= \frac{1}{4} (2ab - c^2 + a^2 + b^2)(2ab + c^2 - a^2 - b^2). \qquad \blacksquare \end{align*}

  2. Proof. We simplify the formula in part (a),

        \begin{align*}  && 4S^2 &= \frac{1}{4} (2ab - c^2 + a^2 + b^2)(2ab + c^2 - a^2 - b^2) \\  \implies && S^2 &= \frac{1}{16} ((a+b)^2 - c^2)(c^2 - (a-b)^2) \\  \implies && S^2 &= \frac{1}{16} (a+b+c)(a+b-c)(c-a+b)(c+a-b) \\  \implies && S^2 &= \frac{a+b+c}{2} \cdot \frac{a+b-c}{2} \cdot \frac{c-a+b}{2} \cdot \frac{c+a-b}{2} \\[9pt]  \implies && S^2 &= s(s-c)(s-a)(s-b) \\  \implies && S &= \sqrt{s (s-a)(s-b)(s-c)}. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):