Home » Blog » Prove the “cab minus bac” formula

Prove the “cab minus bac” formula

The “cab minus bac” formula is the vector identity

    \[ A \times (B \times C) = (C \cdot A)B - (B \cdot A)C. \]

Let B = (b_1, b_2, b_3) and C = (c_1, c_2, c_3). Prove that

    \[ \mathbf{i} \times (B \times C) = c_1 B - b_1 C. \]

This is the “cab minus bac” formula in the case A = \mathbf{i}. Prove similar formulas for the special cases A = \mathbf{j} and A = \mathbf{k}. Put these three results together to prove the formula in general.


Proof. For the case A = \mathbf{i} we have

    \begin{align*}  \mathbf{i} \times (B \times C) &= \mathbf{i} \times (b_2 c_3 - b_3 c_2, b_3 c_1 - b_1 c_3, b_1 c_2 - b_2 c_1) \\  &= (0, -b_1 c_2 + b_2 c_1, b_3 c_1 - b_1 c_3) \\  &= c_1 B - b_1 C. \end{align*}

Similarly, for A = \mathbf{j} and A = \mathbf{k} we have

    \begin{align*}  \mathbf{j} \times (B \times C) &= \mathbf{j} \times (b_2 c_3 - b_3 c_2, b_3 c_1 - b_1 c_3, b_1 c_2 - b_2 c_1) \\  &= (b_1 c_2 - b_2 c_1, 0, -b_2 c_3 + b_3 c_2) \\  &= c_2 B - b_2 C \\  \mathbf{k} \times (B \times C) &= \mathbf{k} \times (b_2 c_3 - b_3 c_2, b_3 c_1 - b_1 c_3, b_1 c_2 - b_2 c_1) \\  &= (-b_3 c_1 + b_1 c_3, b_2 c_3 - b_3 c_2, 0) \\  &= c_3 B - b_3 C. \end{align*}

So, if A = a_i \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} is any vector in \mathbb{R}^3 then we have

    \begin{align*}  A \times (B \times C) &= a_1 \mathbf{i} \times (B \times C) + a_2 \mathbf{j} \times (B \times C) + a_3 \mathbf{k} \times (B \times C) \\  &= a_1 (c_1 B - b_1 C) + a_2 (c_2 B - b_2 C) + a_3 (c_3 B - b_3 C) \\  &= (a_1 c_1 + a_2 c_2 + a_3 c_3) B - (a_1 b_1 + a_2 b_2 + a_3 b_3) C \\  &= (A \cdot C)B - (A \cdot B) C. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):