Home » Blog » Prove an identity of cross products and the unit coordinate vectors

Prove an identity of cross products and the unit coordinate vectors

Prove that we have the identity:

    \[ \mathbf{i} \times (A \times \mathbf{i}) + \mathbf{j} \times (A \times \mathbf{j}) + \mathbf{k} \times (A \times \mathbf{k}) = 2A. \]


Proof. Let A = (a_1, a_2, a_3) and compute,

    \begin{align*}  \mathbf{i} &\times (A \times \mathbf{i}) + \mathbf{j} \times (A \times \mathbf{j}) + \mathbf{k} (A \times \mathbf{k}) \\  &= \mathbf{i} \times (0, a_3, -a_2) + \mathbf{j} \times (-a_3, 0, a_1) + \mathbf{k} \times (a_2, -a_1, 0) \\  &= (0,a_2, a_3) + (a_1, 0, a_3) + (a_1, a_2, 0) \\  &= 2(a_1, a_2, a_3) \\  &= 2A. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):