Home » Blog » Find the cosine of the angle between two vectors given other relations

Find the cosine of the angle between two vectors given other relations

Let A,B \in \mathbb{R}^3 be two non-parallel vectors such that

    \[ A \cdot B = 2, \qquad \lVert A \rVert = 1, \qquad \lVert B \rVert = 4. \]

Define the vector C = 2 (A \times B) - 3B. Compute A \cdot (B+C), \ \lVert C \rVert, and the cosine of the angle between B and C.


First, we have

    \begin{align*}  A \cdot (B+C) &= A \cdot B + A \cdot C \\  &= 2 + A \cdot (2 (A \times B) - 3 B) \\  &= 2 - 3(A \cdot B) \\  &= -4. \end{align*}

Next, for the norm of C we have

    \begin{align*}  \lVert C \rVert &= \big( (2 (A \times B) - 3B) \cdot (2 (A \times B) - 3B) \big)^{\frac{1}{2}} \\  &= \big( 4(A \times B) \cdot (A\times B) + 9 B \cdot B \big)^{\frac{1}{2}} \\  &= \big( 4 (\lVert A \rVert^2 \lVert B \rVert^2 - (A \cdot B)^2) + 4 \cdot 36 \big)^{\frac{1}{2}} \\  &= \sqrt{192} \\  &= 8 \sqrt{3}. \end{align*}

Finally, to compute the cosine of the angle between B and C, we first compute

    \begin{align*}  \lVert B \times C \rVert^2 = \lVert B \rVert^2 \lVert C \rVert^2 - (B \cdot C)^2 \\  &= (16)(192) - (48)^2 \\  &= 768 \end{align*}

Therefore \lVert B \times C \rVert = \sqrt{768} = 16 \sqrt{3}. And so,

    \begin{align*}  && \lVert B \times C \rVert &= \lVert B \rVert \lVert C \rVert \sin \theta \\  &&&= 32 \sqrt{3} \sin \theta \\  \implies && \sin \theta &= \frac{1}{2} \\  \implies && \cos \theta &= -\frac{\sqrt{3}}{2}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):