Home » Blog » Prove some properties of linearly independent vectors

Prove some properties of linearly independent vectors

Let A,B be two linearly independent vectors in \mathbb{R}^3 and let

    \[ C = (B \times A) - B. \]

  1. Prove that A and B+C are orthogonal.
  2. Prove that \frac{\pi}{2} < \theta < \pi where \theta is defined to be the angle between B and C.
  3. Compute the length of C if \lVert B \rVert =  1 and \lVert B \times A \rVert = 2.

  1. Proof. We have

        \begin{align*}  C = (B \times A) - B && \implies && B + C &= (B \times A) \\  && \implies && A \cdot (B+C) &= A \cdot (B \times A) \\  && \implies && A \cdot (B+C) &= 0 \end{align*}

    from Theorem 13.12(e) (page 483 of Apostol). Hence, A and B+C are orthogonal. \qquad \blacksquare

  2. Proof. Starting with the definition of C we have

        \begin{align*}  C = (B \times A) - B && \implies && B + C &= B \times A \\  && \implies && B \cdot (B+C) &= B \cdot (B \times A) \\  && \implies && B^2 + B \cdot C &= 0. \end{align*}

    But, B \neq 0, so B^2 > 0. Therefore, B \cdot C < 0. Hence, we have

        \[ \lVert B \rVert \lVert C \rVert \cos \theta < 0 \quad \implies \quad \cos \theta < 0. \]

    Therefore,

        \[ \frac{\pi}{2} < \theta < \pi. \qquad \blacksquare \]

  3. Again, we start with definition of C,

        \begin{align*}  C = B \times A - B && \implies && B + C &= B \times A \\  && \implies && \lVert B + C \rVert^2 &= \lVert B \times A \rVert^2 \\  && \implies && \lVert B \rVert^2 + \lVert C \rVert^2 + 2B \cdot C &= 4 \\  && \implies && \lVert C \rVert^2 &= 3 - 2 B \cdot C. \end{align*}

    But, from part (b) we know B \cdot C = -1. Hence, \lVert C \rVert = \sqrt{5}.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):