Home » Blog » Find a unit vector orthogonal to the given vectors

Find a unit vector orthogonal to the given vectors

For each of the following pairs of vectors find an orthogonal vector of unit length.

  1. A = \mathbf{i} + \mathbf{j} + \mathbf{k}, \qquad B = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k};
  2. A = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}, \qquad B = -\mathbf{i} + 5\mathbf{j} + 7\mathbf{k};
  3. A = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k}, \qquad B = -3\mathbf{i} + 2\mathbf{j} - \mathbf{k}.

  1. First, we have

        \begin{align*}   A \times B &= \begin{vmatrix*} \mathbf{i} & \mathbf{j} &\mathbf{k} \\ 1 & 1 & 1 \\ 2 & 3 & -1 \end{vmatrix*} \\[9pt]  &= \begin{vmatrix*} 1 & 1 \\ 3 & -1 \end{vmatrix*} \mathbf{i} - \begin{vmatrix*} 1 & 1 \\ 2 & -1 \end{vmatrix*} \mathbf{j} + \begin{vmatrix*} 1 & 1 \\ 2 & 3 \end{vmatrix*}\mathbf{k} \\[9pt]  &= -4\mathbf{i} +3 \mathbf{j} + \mathbf{k} \end{align*}

    Therefore, the vectors orthogonal to both A and B are of the form N = (-4c, 3c, c) for c \neq 0. Setting the length of this equal to 1 we have

        \begin{align*}  \lVert N \rVert = 1 && \implies && 16c^2 + 9c^2 + c^2 &= 1 \\  && \implies && c^2 &= \frac{1}{26} \\  && \implies && c &= \pm \frac{1}{\sqrt{26}}. \end{align*}

    Therefore, the vectors orthogonal to A and B with unit length are

        \[ N = \pm \frac{1}{\sqrt{26}} (-4,3,1). \]

  2. First, we have

        \begin{align*}   A \times B &= \begin{vmatrix*} \mathbf{i} & \mathbf{j} &\mathbf{k} \\ 2 & -3 & 4 \\ -1 & 5 & 7 \end{vmatrix*} \\[9pt]  &= \begin{vmatrix*} -3 & 4 \\ 5 & 7 \end{vmatrix*} \mathbf{i} - \begin{vmatrix*} 2 & 4 \\ -1 & 7 \end{vmatrix*} \mathbf{j} + \begin{vmatrix*} 2 & -3 \\ -1 & 5 \end{vmatrix*}\mathbf{k} \\[9pt]  &= -41\mathbf{i} -18 \mathbf{j} + 7 \mathbf{k} \end{align*}

    Therefore, the vectors orthogonal to both A and B are of the form N = (-41c, -18c, 7c) for c \neq 0. Setting the length of this equal to 1 we have

        \begin{align*}  \lVert N \rVert = 1 && \implies && 1681c^2 + 324c^2 + 49c^2 &= 1 \\  && \implies && c^2 &= \frac{1}{2054} \\  && \implies && c &= \pm \frac{1}{\sqrt{2054}}. \end{align*}

    Therefore, the vectors orthogonal to A and B with unit length are

        \[ N = \pm \frac{1}{\sqrt{2054}} (-41,-18,7). \]

  3. First, we have

        \begin{align*}   A \times B &= \begin{vmatrix*} \mathbf{i} & \mathbf{j} &\mathbf{k} \\ 1 & -2 & 3 \\ -3 & 2 & -1 \end{vmatrix*} \\[9pt]  &= \begin{vmatrix*} -2 & 3 \\ 2 & -1 \end{vmatrix*} \mathbf{i} - \begin{vmatrix*} 1 & 3 \\ -3 & -1 \end{vmatrix*} \mathbf{j} + \begin{vmatrix*} 1 & -2 \\ -3 & 2 \end{vmatrix*}\mathbf{k} \\[9pt]  &= -4 \mathbf{i} -8 \mathbf{j} - 4\mathbf{k} \end{align*}

    Therefore, the vectors orthogonal to both A and B are of the form N = (-4c', -8c', -4c') = -4(c',2c',c') = (c,2c,c) for c \neq 0. Setting the length of this equal to 1 we have

        \begin{align*}  \lVert N \rVert = 1 && \implies && c^2 + 4c^2 + c^2 &= 1 \\  && \implies && c^2 &= \frac{1}{6} \\  && \implies && c &= \pm \frac{1}{\sqrt{6}}. \end{align*}

    Therefore, the vectors orthogonal to A and B with unit length are

        \[ N = \pm \frac{1}{\sqrt{6}} (1,2,1). \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):