Home » Blog » Prove some properties of a given point and line

Prove some properties of a given point and line

Let P = (1,2,3), \ A = (1,-2,2), \ Q = (3,3,1) and consider the line L(P;A). Let X(t) = P + tA be an arbitrary point on this line.

  1. Compute \lVert Q - X(t) \rVert^2.
  2. Prove there is exactly one point X(t_0) such that \lVert Q - X(t) \rVert is minimal, and compute the minimum distance.
  3. Prove that Q - X(t_0) is orthogonal to A.

  1. We compute,

        \begin{align*}  X(t) = P + tA && \implies && X(t) &= (1+t, 2-2t, 3+2t) \\  && \implies && Q-X(t) &= (2-t, 1+2t, -2-2t) \\  && \implies && \lVert Q - X(t) \rVert^2 &= \big( (2-t, 1+2t, -2-2t) \cdot (2-t, 1+2t, -2-2t) \big) \\  &&&&&= 4-4t + t^2 + 1 + 4t + 4t^2 + 4 + 8t + 4t^2 \\  &&&&&= 9+8t + 9t^2. \end{align*}

  2. Proof. From part (a) we know the distance function is d(t) = 9 + 8t + 9t^2. Therefore, the derivative is d'(t) = 8 + 18t. This derivative is less than 0 for t < -\frac{4}{9} and greater than 0 for t > -\frac{4}{9}. Therefore, \lVert Q - X(t) \rVert has a minimum at t = -\frac{4}{9}. The distance at this point is

        \[ \left( 9 + 8 \left( -\frac{4}{9} \right) + 9 \left( -\frac{4}{9} \right)^2 \right)^{\frac{1}{2}} = \frac{\sqrt{65}}{3}. \qquad \blacksquare\]

  3. Proof. First, we have

        \begin{align*}  Q - X(t_0) &= (3,3,1) - (P + t_0 A) \\  &= (3,3,1) - \left( (1,2,3) - \frac{4}{9}  (1,-2,2) \right) \\  &= (3,3,1) - \left( \frac{5}{9}, \frac{26}{9}, \frac{19}{9} \right) \\  &= \left( \frac{22}{9}, \frac{1}{9}, -\frac{10}{9} \right). \end{align*}

    Therefore,

        \begin{align*}  A \cdot (Q - X(t_0)) &= (1,-2,2) \cdot \left( \frac{22}{9}, \frac{1}{9}, -\frac{10}{9} \right) \\  &= \frac{22}{9} - \frac{2}{9} - \frac{20}{9} \\  &= 0. \end{align*}

    Hence, A and Q-X(t_0) are orthogonal. \qquad \blacksquare

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):