Home » Blog » Prove some statements about the spans of finite sets of vectors

Prove some statements about the spans of finite sets of vectors

Let A and B be finite sets of vectors in \mathbb{R}^n. Let L(A) and L(B) denote the linear spans of A and B. Prove the following.

  1. If A \subseteq B, then L(A) \subseteq L(B).
  2. L(A \cap B) \subseteq L(A) \cap L(B).
  3. Give an example in which L(A \cap B) \neq L(A) \cap L(B).

  1. Proof. Let X = L(A). Then, there are vectors \alpha_1, \ldots, \alpha_r \in A such that

        \[ X = c_1 \alpha_1 + \cdots + c_r \alpha_r. \]

    But, \alpha_i \in A implies \alpha_i \in B since A \subseteq B. Hence,

        \[ X = c_1 \alpha_1 + \cdots + c_r \alpha_r  \]

    for \alpha_1, \ldots, \alpha_r \in B. Therefore, X \in L(B). \qquad \blacksquare

  2. If X \in L(A \cap B) then

        \[ X = c_1 \alpha_1 + \cdots + c_r \alpha_r \]

    for \alpha_i \in A and \alpha_i \in B. But, \alpha_i \in A implies X \in L(A) and \alpha_i \in B implies X \in L(B). Thus, x \in L(A) \cap L(B). \qquad \blacksquare

  3. Let A = \{ (0,1), (1,0) \} and let B = \{ (1,1) \}. Then,

        \[ L(A) = \mathbb{R}^2$, \qquad L(B) = \{ (a,a) \mid a \in \mathbb{R} \}. \]

    So, L(A) \cap L(B) = \{ (a,a) \mid a \in \mathbb{R} \}. But, A \cap B = \varnothing so L (A \cap B) = \varnothing. \qquad \blacksquare

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):