Home » Blog » Prove some relations between three given vectors in Rn

Prove some relations between three given vectors in Rn

Let A,B,C \in \mathbb{R}^n all be nonzero. Further, let the angle between A and C be equal to the angle between B and C. Prove that C is orthogonal to

    \[ \lVert B \rVert A - \lVert A \rVert B. \]


Proof. Let \theta be the angle between A and C which is equal to the angle between B and C. Then we have

    \[ \cos \theta &= \frac{A \cdot C}{\lVert A \rVert \lVert C \rVert} = \frac{B \cdot C}{\lVert B \rVert \lVert C \rVert}. \]

This implies,

    \[ A \cdot C = \lVert A \rVert \lVert C \rVert \cos \theta \quad \text{and} \quad B \cdot C = \lVert B \rVert \lVert C \rVert \cos \theta. \]

Then, we have

    \begin{align*}  C \cdot \left( \lVert B \rVert A - \lVert A \rVert B \right) &= (A \cdot C) \lVert B \rVert - (B \cdot C) \lVert A \rVert \\[9pt]  &= \lVert A \rVert \lVert B \rVert \lVert C \rVert \cos \theta - \lVert A \rVert \lVert B \rVert \lVert C \rVert \cos \theta \\[9pt]  &= 0. \end{align*}

Hence, C and \lVert B \rVert A - \lVert A \rVert B are orthogonal. \qquad \blacksquare

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):