Home » Blog » Prove some properties of the vectors (cos θ, -sin θ) and (sin θ, cos θ)

Prove some properties of the vectors (cos θ, -sin θ) and (sin θ, cos θ)

Consider the vectors

    \[ A = (\cos \theta, - \sin \theta), \qquad B = (\sin \theta, \cos \theta) \qquad \text{in } \mathbb{R}^2. \]

  1. Prove that A and B are orthogonal and that they both have unit length.
  2. Find all vectors (x,y) \in \mathbb{R}^2 such that (x,y) = xA + yB.

  1. Proof. First, we show A and B have unit length,

        \begin{align*}  \lVert A \rVert &= \sqrt{ \cos^2 \theta + \sin^2 \theta} = \sqrt{1} = 1 \\  \lVert B \rVert &= \sqrt{\sin^2 \theta + \cos^2 \theta} = \sqrt{1} = 1. \end{align*}

    Then,

        \[ A \cdot B = \cos \theta \sin \theta - \sin \theta \cos theta = 0. \qquad \blacksquare \]

  2. If (x,y) = xA + yB then we have

        \begin{align*}  (x,y) = xA + yB && \implies && x = x\cos \theta + y \sin \theta \\  &&&& y &= -x \sin \theta + y \cos \theta. \end{align*}

    This holds for all (x,y) if \cos \theta = 1. If \cos \theta \neq 1 then we must have x = y = 0.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):