Home » Blog » Prove that some properties are still valid with an alternate definition of the dot product

Prove that some properties are still valid with an alternate definition of the dot product

If we define the dot product by the formula

    \[ (a_1, a_2, a_3) \cdot (b_1, b_2, b_3) = 2a_1 b_1 + a_2 b_2 + a_3 b_3 + a_1 b_3 + a_3 b_1 \]

prove that the properties of the dot product in Theorem 12.2 (page 451 of Apostol) continue to be valid.


Proof. Let A = (a_1, a_2, a_3), B = (b_1, b_2, b_3) and C = (c_1, c_2, c_3).

  1. We compute,

        \begin{align*}  A \cdot B &= 2a_1 b_1 + a_2 b_2 + a_3 b_3 + a_1 b_3 + a_3 b_1 \\  &= 2b_1 a_1 + b_2 a_2 + b_3 a_3 + b_3 a_1 + b_1 a_3 \\  &= B \cdot A. \end{align*}

  2. We compute

        \begin{align*}  A \cdot (B+C) &= A \cdot (b_1+c_1, b_2 + c_2, b_3 + c_3) \\  &= 2a_1 (b_1 + c_1) + a_2(b_2 + c_2) + a_3 (b_3 + c_3) + a_1(b_3 + c_3) + a_3 (b_1 + c_1) \\  &= 2a_1 b_1 + 2a_1 c_1 + a_2 b_2 + a_2 c_2 + a_3 b_3 + a_3 c_3 + a_1 b_3 + a_1 c_3 + a_3 b_1 + a_3 c_1 \\  &= (2a_1 b_1 + a_2 b_2 + a_3 b_3 + a_1 b_3 + a_3 b_1) + (2a_1 c_1 + a_2 c_2 + a_3 c_3 + a_1 c_3 + a_3 c_1)\\  &= A \cdot B + A \cdot C. \end{align*}

  3. We compute,

        \begin{align*}  c (A \cdot B) &= c(2a_1 b_1 + a_2 b_2 + a_3 b_3 + a_1 b_3 + a_3 b_1) \\  &= 2(ca_1)b_1 + (ca_2)b_2 + (ca_3)b_3 + (ca_1)b_3 + (ca_3) b_1 \\  &= (cA) \cdot B. \end{align*}

    On the other hand,

        \begin{align*}  c (A \cdot B) &= 2a_1 (cb_1) + a_2 (cb_2) + a_3 (cb_3) + a_1(cb_3) + a_3 (cb_1) \\  &= A \cdot (cB). \end{align*}

  4. We compute,

        \begin{align*}  A \cdot A &= 2a_1^2 + a_2^2 + a_3^2 + a_1 a_3 + a_3 a_1 \\  &= a_1^2 + a_2^2 + (a_1 + a_3)^2 \\  &> 0 \end{align*}

    if A \neq O.

  5. If A = O then

        \[ A \cdot A = 2a_1^2 + a_2^2 + a_3^2 + a_1 a_3 + a_3 a_1 = 0. \qquad \blacksquare \]

Again, Cauchy-Schwartz will hold since the proof of Cauchy-Schwarz relied only on properties (a)-(e), which are all still valid under this new definition of the dot product.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):