Home » Blog » Prove some properties of an alternative definition of the norm of a vector

Prove some properties of an alternative definition of the norm of a vector

Consider an alternative definition for the norm of a vector A = (a_1, \ldots, a_n) given by

    \[ \lVert A \rVert = \sum_{k=1}^n |a_k|. \]

  1. Prove that this definition satisfies all of the properties of Theorems 12.4 and 12.5 (pages 453-454 of Apostol).
  2. Consider this definition in \mathbb{R}^2 and draw the set of all points (x,y) which have norm 1.
  3. If we defined

        \[ \lVert A \rVert = \left| \sum_{k=1}^n a_k \right| \]

    which of the properties of Theorems 12.4 and 12.5 would hold?


  1. Proof. For Theorem 12.4(a) we have

        \[ \lVert A \rVert > 0 \]

    if A \neq O since all of the terms in the sum are greater than or equal to 0, with at least one non-zero since A \neq O.

    For Theorem 12.4(b) if A = O then \lVert A \rVert = \sum_{k=1}^n |0| = 0.

    For Theorem 12.4(c) we have

        \[ \lVert cA \rVert = \sum_{k=1}^n |ca_k| = \sum_{k=1}^n |c| |a_k| = |c| \sum_{k=1}^n |a_k| = |c| \lVert A \rVert. \]

    For Theorem 12.5 we have

        \begin{align*}  \lVert A + B \rVert &= \sum_{k=1}^n |a_k + b_k| \\  &\leq \sum_{k=1}^n (|a_k| + |b_k|) \\  &= \sum_{k=1}^n |a_k| + \sum_{k=1}^n |b_k| \\  &= \lVert A \rVert + \lVert B \rVert. \qquad \blacksquare \end{align*}

  2. We have the following diagram

    Rendered by QuickLaTeX.com

  3. Property 12.4(a) fails since if we take A = (-1,1) then \lVert A \rVert = 0, but A \neq O.
    Property 12.4(b) holds since if A = O then \lVert A \rVert =0.
    Property 12.4(c) holds since

        \begin{align*}  \lVert cA \rVert &= \left| \sum_{k= 1}^n ca_k \right| \\[9pt]  &= \left| c \sum_{k=1}^n a_k \right| \\[9pt]  &= |c| \left| \sum_{k=1}^n a_k \right| \\[9pt]  &= |c| \lVert A \rVert. \end{align*}

    Property 12.5 holds since

        \begin{align*}  \lVert A +B \rVert &= \left| \sum_{k=1}^n (a_k + b_k) \right| \\[9pt]  &= \left| \sum_{k=1}^n a_k + \sum_{k=1}^n b_k \right| \\[9pt]  &\leq \left| \sum_{k=1}^n a_k \right| + \left| \sum_{k=1}^n b_k \right| \\[9pt]  &= \lVert A \rVert + \lVert B \rVert.  \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):