Home » Blog » Find the angle between two vectors given other relations

Find the angle between two vectors given other relations

Let A,B,C \in \mathbb{R}^3 be three vectors such that

    \[ \lVert A \rVert = \lVert C \rVert = 5, \qquad \lVert B \rVert = 1, \qquad \lVert A - B + C \rVert = \lVert A + B + C \rVert. \]

Given that the angle between A and B is equal to \frac{\pi}{8}, determine the angle between C and C.


First, we have

    \begin{align*}  && \lVert A - B + C \rVert &= \lVert A + B + C \rVert \\[9pt]  \implies && \left ( (A - B + C ) \cdot (A - B + C) \right)^{\frac{1}{2}} &= \left( (A+B+C) \cdot (A+B+C) \right)^{\frac{1}{2}} \\[9pt]  \implies && A^2 + B^2 + C^2 - 2A \cdot B - 2B \cdot C + 2A \cdot C &= A^2 + B^2 + C^2 + 2A\cdot B + 2 B \cdot C + 2 A \cdot C \\[9pt]  \implies && 4A \cdot B + 4B \cdot C &= 0 \\[9pt]  \implies && A \cdot B &= -B \cdot C. \end{align*}

Then, since the angle between A and B is \frac{\pi}{8}, we have

    \[ \cos \frac{\pi}{8} = \frac{A \cdot B}{5}. \]

This implies

    \[ \cos \theta = -\frac{A \cdot B}{5} = - \cos \frac{\pi}{8} = \cos \frac{7\pi}{8} \quad \implies \quad \theta = \frac{7 \pi}{8}. \]

Thus, the angle between B and C is \frac{7 \pi}{8}.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):