Home » Blog » Compute some scalars given to make given equations hold

Compute some scalars given to make given equations hold

Find x,y \in \mathbb{R} such that x(\mathbf{i} - \mathbf{j}) + y(\mathbf{i} + mathbf{j}) is equal to

  1. \mathbf{i};
  2. \mathbf{j};
  3. 3 \mathbf{i} - 5 \mathbf{j};
  4. 7 \mathbf{i} + 5 \mathbf{j},

where \mathbf{i} and \mathbf{j} denote the unit coordinate vectors (1,0) and (0,1), respectively.


  1. We can use Theorem 12.9 (page 465 of Apostol) to compute the scalars. In this case we have X = (1,0) corresponding to \mathbf{i}, A_1 = (1,-1) corresponding to \mathbf{i} - \mathbf{j} and A_2 = (1,1) corresponding to \mathbf{i} + \mathbf{j}.

        \begin{align*}  x &= \frac{(1,0) \cdot (1,-1)}{(1,-1) \cdot (1,-1)} = \frac{1}{2} \\  y &= \frac{(1,0) \cdot (1,1)}{(1,1) \cdot (1,1)} = \frac{1}{2}. \end{align*}

    Therefore, x = y = \frac{1}{2}.

  2. We can use Theorem 12.9 (page 465 of Apostol) to compute the scalars. In this case we have X = (0,1) corresponding to \mathbf{j}, A_1 = (1,-1) corresponding to \mathbf{i} - \mathbf{j} and A_2 = (1,1) corresponding to \mathbf{i} + \mathbf{j}.

        \begin{align*}  x &= \frac{(0,1) \cdot (1,-1)}{(1,-1) \cdot (1,-1)} = -\frac{1}{2} \\  y &= \frac{(0,1) \cdot (1,1)}{(1,1) \cdot (1,1)} = \frac{1}{2}. \end{align*}

    Therefore, x = -\frac{1}{2} and y = \frac{1}{2}.

  3. We can use Theorem 12.9 (page 465 of Apostol) to compute the scalars. In this case we have X = (3,-5) corresponding to 3\mathbf{i}- 5 \mathbf{j}, A_1 = (1,-1) corresponding to \mathbf{i} - \mathbf{j} and A_2 = (1,1) corresponding to \mathbf{i} + \mathbf{j}.

        \begin{align*}  x &= \frac{(3,-5) \cdot (1,-1)}{(1,-1) \cdot (1,-1)} = 4 \\  y &= \frac{(3,-5) \cdot (1,1)}{(1,1) \cdot (1,1)} = -1. \end{align*}

    Therefore, x = 4 and y = -1.

  4. We can use Theorem 12.9 (page 465 of Apostol) to compute the scalars. In this case we have X = (7,5) corresponding to 7\mathbf{i} + 5 \mathbf{j}, A_1 = (1,-1) corresponding to \mathbf{i} - \mathbf{j} and A_2 = (1,1) corresponding to \mathbf{i} + \mathbf{j}.

        \begin{align*}  x &= \frac{(7,5) \cdot (1,-1)}{(1,-1) \cdot (1,-1)} = 1 \\  y &= \frac{(7,5) \cdot (1,1)}{(1,1) \cdot (1,1)} = 6. \end{align*}

    Therefore, x = 1 and y = 6.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):