Home » Blog » Compute the length of a vector satisfying given relations

Compute the length of a vector satisfying given relations

Given vectors A,B \in \mathbb{R}^n such that \lVert A \rVert = 6 and such that for every pair x,y \in \mathbb{R} the two vectors

    \[ xA + yB \qquad \text{and} \qquad 4yA - 9xB \]

are orthogonal. Compute the length of the vectors B and 2A + 3B.


Let A = (a_1, \ldots, a_n) and B = (b_1, \ldots, b_n). Then, since xA + yB and 4yA - 9xB are orthogonal we know that for every choice of x, y\in \mathbb{R} we have

    \begin{align*}  (xA + yB) \cdot (4yA - 9xB) &= (xa_1 + yb_1, \ldots, xa_n + yb_n) \cdot (4ya_1 - 9xb_1, \ldots, 4ya_n - 9xb_n) \\  &= \sum_{i=1}^n \left( 4xya_i^2 + 4y^2 a_i b_i - 9x^2 a_i b_i - 9xy b_i^2 right) \\  &= 0. \end{align*}

This must hold for all choices of x and y, so in particular, it must hold for x = 2, y = 3. Substituting these values gives us the equation

    \begin{align*}  && \sum_{i=1}^n \left( 24a_i^2 + 36a_i b_i - 36a_i b_i - 54 b_i^2 \right) &= 0\\[9pt]  \implies && (24 \cdot 36) - 54 \cdot \lVert B \rVert^2 &= 0 \\[9pt]  \implies && \lVert B \rVert = 4. \end{align*}

Next, we have

    \[ \lVert 2A+3B \rVert = \left( \sum_{i=1}^n (2A+3B) \cdot (2A+3B) \right)^{\frac{1}{2}} = \left( \sum_{i=1}^n (4a_i^2 + 12a_i b_i + 9b_i^2) \right)^{\frac{1}{2}}. \]

Letting x = y = 1 in our orthogonality equation we have

    \begin{align*}  && \sum_{i=1}^n (4a_i^2 - 5a_i b_i - 9b_i^2) &= 0 \\[9pt]  \implies && 4 \cdot 36 - 9 \cdot 16 - 5 \sum_{i=1}^n a_i b_i &= 0 \\[9pt]  \implies && \sum_{i=1}^n a_i b_i &= 0. \end{align*}

Thus,

    \begin{align*}  \lVert 2A+3B \rVert &= \left( \sum_{i=1}^n (4a_i^2 + 9b_i^2) \right)^{\frac{1}{2}} \\[9pt]  &= \left( 4 \cdot 36 + 9 \cdot 16 \right)^{\frac{1}{2}} \\[9pt]  &= \sqrt{288} \\  &= 12 \sqrt{2}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):