Home » Blog » Compute the direction cosines of a given vector

Compute the direction cosines of a given vector

  1. Let \mathbf{i}, \mathbf{j}, \mathbf{k} denote the unit coordinate vectors (1,0,0), \ (0,1,0), \ (0,0,1) in \mathbb{R}^3 and let A = (6,3,-2). Further, let a,b,c denote the angles between A and the unit coordinate vectors. Compute \cos a, \ \cos b, \cos c.
  2. Find all vectors in \mathbb{R}^3 that are parallel to A and have unit length.

  1. We compute

        \begin{align*}  \cos a &= \frac{A \cdot \mathbf{i}}{\lVert A \rVert \lVert \mathbf{i} \rVert} = \frac{6}{\sqrt{49}} = \frac{6}{7}. \\[9pt]  \cos b &= \frac{A \cdot \mathbf{j}}{\lVert A \rVert \lVert \mathbf{j} \rVert} = \frac{3}{\sqrt{49}} = \frac{3}{7}. \\[9pt]  \cos c &= \frac{A \cdot \mathbf{k}}{\lVert A \rVert \lVert \mathbf{k} \rVert} = \frac{-2}{\sqrt{49}} = -\frac{2}{7}. \end{align*}

  2. If B is a vector in parallel to A then we know there is a nonzero t \in \mathbb{R} such that

        \[ B = tA = (6t, 3t, -2t). \]

    Since B has unit length we then have

        \[ \lVert B \rVert = 1 \quad \implies \quad \sqrt{36t^2 + 9t^2 + 4t^2} = 1 \quad \implies \quad \pm 7t = 1 \quad \implies \quad t = \pm \frac{1}{7}. \]

    Therefore,

        \[ B = \left( \frac{6}{7}, \frac{3}{7}, -\frac{2}{7} \right) \qquad \text{or} \qquad B = \left( -\frac{6}{7}, -\frac{3}{7}, \frac{2}{7} \right). \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):