Home » Blog » Find a vector satisfying given relations with a given vector

Find a vector satisfying given relations with a given vector

Find a vector B \in \mathbb{R}^2 such that B \cdot A = 0 and \lVert B \rVert = \lVert A \rVert for the following vectors A,

  1. A = (1,1);
  2. A = (1,-1);
  3. A = (2,-3);
  4. A = (a,b).

  1. If A = (1,1) then letting B = (b_1, b_2) we have

        \[ B \cdot A = 0 \quad \implies \quad b_1 + b_2 = 0 \quad \implies \quad b_2 = -b_1. \]

    Since \lVert A \rVert = \sqrt{2} we have \lVert B \rVert = \sqrt{2} therefore,

        \[ \sqrt{b_1^2 + b_2^2} =\sqrt{2} \quad \implies \quad 2b_1^2 = 2 \quad \implies \quad b_1 = \pm 1, \ b_2 = \mp 1. \]

    Therefore, B = (1,-1) or B = (-1,1).

  2. If A = (1,-1) then letting B = (b_1, b_2) we have

        \[ B \cdot A = 0 \quad \implies \quad b_1 - b_2 = 0 \quad \implies \quad b_2 = b_1. \]

    Since \lVert A \rVert = \sqrt{2} we have \lVert B \rVert = \sqrt{2} therefore,

        \[ \sqrt{b_1^2 + b_2^2} =\sqrt{2} \quad \implies \quad 2b_1^2 = 2 \quad \implies \quad b_1 = \pm 1, \ b_2 = \pm 1. \]

    Therefore, B = (1,1) or B = (-1,-1).

  3. If A = (2,-3) then letting B = (b_1, b_2) we have

        \[ B \cdot A = 0 \quad \implies \quad 2b_1 - 3b_2 = 0 \quad \implies \quad b_1 = \frac{3}{2} b_2. \]

    Since \lVert A \rVert = \sqrt{13} we have \lVert B \rVert = \sqrt{13} therefore,

        \[ \sqrt{b_1^2 + b_2^2} =\sqrt{13} \quad \implies \quad \sqrt{ \left( \frac{9}{4} \right) b_2^2 + b_2^2 } = \sqrt{13} \quad \implies \quad b_2 = \pm 2, \ b_2 = \pm 3. \]

    Therefore, B = (3,2) or B = (-3,-2).

  4. If A = (a,b) then letting B = (b_1, b_2) we have

        \[ B \cdot A = 0 \quad \implies \quad ab_1 + bb_2 = 0 \quad \implies \quad b_1 = \frac{b}{a} b_2. \]

    Since \lVert A \rVert = \sqrt{a^2 + b^2} we have \lVert B \rVert = \sqrt{a^2 + b^2} therefore,

        \[ \sqrt{b_1^2 + b_2^2} =\sqrt{2} \quad \implies \quad \sqrt{ \left( \frac{b}{a} \right) b_2^2 + b_2^2 } = \sqrt{a^2+b^2} \quad \implies \quad b_1= \pm b \quad b_2 = \mp a. \]

    (The final equalities follow from b_2^2 = \pm (a^2+b^2) \left( \left(\frac{b}{a}\right)^2 + 1 \right)^{-1}.) Therefore we have B = (b,-a) or B = (-b,a).

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):