Home » Blog » Prove some properties of vector algebra in Rn

Prove some properties of vector algebra in Rn

  1. Prove that for all vectors in \mathbb{R}^n we have commutativity of vector addition,

        \[ A+ B = B + A \]

    associativity of vector addition,

        \[ A + (B + C) = (A+B) + C \]

    associativity of scalar multiplication,

        \[ c(dA) = (cd)A \]

    and distributivity,

        \[ c(A+B) = cA + cB, \qquad \text{and} \qquad (c+d)A = cA + dA. \]

  2. Illustrate the geometric meaning of the distributive laws

        \[ (c+d)A = cA + dA \qquad \text{and} \qquad c(A+B) = cA+ cB. \]


  1. Proof. Let A = (a_1, \ldots, a_n), B = (b_1, \ldots, b_n), and C = (c_1, \ldots, c_n) be vectors in \mathbb{R}^n and let c,d \in \mathbb{R} be scalars. Then by commutativity of addition in \mathbb{R} we have

        \begin{align*}   A + B &= (a_1, \ldots, a_n) + (b_1, \ldots, b_n) \\  &= (a_1 + b_1, \ldots, a_n +b_n) = (b_1 + a_1, \ldots, b_n +a_n) \\  &= (b_1, \ldots, b_n) + (a_1, \ldots, a_n) \\  &= B+A. \end{align*}

    By associativity of addition in \mathbb{R} we have

        \begin{align*}  A+(B+C) &= (a_1, \ldots, a_n) + \big( (b_1, \ldots, b_n) + (c_1, \ldots, c_n) \big) \\  &= (a_1, \ldots, a_n) + (b_1 +c_1, \ldots, b_n + c_n) \\  &= (a_1 + (b_1 + c_1), \ldots, a_n + (b_n + c_n)) \\  &= ((a_1 + b_1) + c_1), \ldots, (a_n + b_n)+ c_n) \\  &= (a_1 + b_1, \ldots, a_n + b_n) + (c_1, \ldots, c_n) \\  &= \big( (a_1, \ldots, a_n)+ (b_1, \ldots, b_n) \big) + (c_1, \ldots, c_n) \\  &= (A+B) + C. \end{align*}

    For associativity of scalar multiplication we have

        \begin{align*}  c(dA) &= c(d (a_1, \ldots, a_n)) \\  &= c(da_1, \ldots, d a_n) \\  &= (c(da_1), \ldots, c(da_n)) \\  &= ((cd)a_1, \ldots, (cd) a_n) \\  &= (cd)(a_1, \ldots, a_n) \\  &= (cd)A. \end{align*}

    For the first distributivity law we have

        \begin{align*}  c(A+B) &= c \big( (a_1, \ldots, a_n) + (b_1, \ldots, b_n) \big) \\  &= c (a_1 + b_1, \ldots, a_n + b_n ) \\  &= (c(a_1 + b_1), \ldots, c(a_n + b_n)) \\  &= (ca_1 + cb_1, \ldots, ca_n + cb_n) \\  &= (ca_1, \ldots, ca_n) + (cb_1, \ldots, cb_n) \\  &= c(a_1, \ldots, a_n) + c(b_1, \ldots, b_n) \\  &= cA + cB. \end{align*}

    For the second distributivity law we have

        \begin{align*}  (c+d)A &= (c+d)(a_1, \ldots, a_n) \\  &= \big( (c+d)a_1, \ldots, (c+d)a_n \big) \\  &= ( ca_1 + da_1, \ldots, ca_n + da_n ) \\  &= (ca_1, \ldots, ca_n) + (da_1, \ldots, da_n) \\  &= c(a_1, \ldots, a_n) + d(a_1, \ldots, a_n) \\  &= cA + dA. \qquad \blacksquare \end{align*}

  2. The distributive law (c+d)A = cA+dA means the vector (c+d)A is obtained by adding the arrow dA to the end of the arrow cA.
    The distributive law c(A+B) = cA+cB means that the vector c(A+B) is the vertex of the parallelogram formed by cA and cB.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):