Home » Blog » Assume y′′ = xy has a power-series solution and determine the coefficient an

Assume y′′ = xy has a power-series solution and determine the coefficient an

Assume that the differential equation

    \[ y'' = xy \]

has a power-series solution y = \sum a_n x^n and find a formula for the coefficient a_n.


First, we have

    \begin{align*}  && y &= \sum_{n=0}^{\infty} a_n x^n \\[9pt]  \implies && y' &= \sum_{n=1}^{\infty} n a_n x^{n-1} \\[9pt]  \implies && y'' &= \sum_{n=2}^{\infty}n (n-1) a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n.  \end{align*}

Therefore, we have

    \begin{align*}  && y'' &= xy \\[9pt]  \implies && \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n &= x \sum_{n=0}^{\infty} a_n x^n  \\[9pt]  \implies && \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n &= \sum_{n=0}^{\infty} a_n x^{n+1} \\[9pt]  \implies && 2a_2 + \sum_{n=1}^{\infty} (n+2)(n+1)a_{n+2}x^n &= \sum_{n=0}^{\infty} a_n x^{n+1} \\[9pt]  \implies && 2a_2 + \sum_{n=0}^{\infty} (n+3)(n+2) a_{n+3} x^{n+1} &= \sum_{n=0}^{\infty} a_n x^{n+1}. \end{align*}

Equating like powers of x, we have a recursive relation for a_n when n > 2 given by

    \[ a_{n+3} = \frac{a_n}{(n+3)(n+2)}, \]

Furthermore, we have that a_2 = 0 and that a_0 and a_1 are arbitrary constants, say c_0 and c_1, respectively. Then by induction we establish

    \begin{align*}   a_{3n} &= \frac{a_0}{(2 \cdot 3)(5 \cdot 6) \cdots ((3n-1)\cdot(3n))} \\[9pt]  a_{3n+1} &= \frac{a_1}{(3 \cdot 4)(6 \cdot 7) \cdots ((3n)\cdot(3n+1))} \\[9pt]  a_{3n+2} &= 0. \end{align*}

Therefore,

    \[ y = c_0 \left( 1 + \sum_{n=1}^{\infty} \frac{x^{3n}}{(2 \cdot 3)(5 \cdot 6) \cdots ((3n-1)\cdot(3n))} \right) + c_1 \left( x + \sum_{n=1}^{\infty} \frac{x^{3n+1}}{(3 \cdot 4)(6 \cdot 7) \cdots ((3n)\cdot (3n+1))} \right). \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):