Home » Blog » Prove that the Bessel functions are solutions of the Bessel equation

Prove that the Bessel functions are solutions of the Bessel equation

In the previous exercise (Section 11.16, Exercise #10) we defined the Bessel functions of the first kind of orders zero and one by,

    \[ J_0 (x) = \sum_{n=0}^{\infty} (-1)^n  \frac{x^{2n}}{(n!)^2 2^{2n}}, \qquad J_1(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{n!(n+1)! 2^{2n+1}}. \]

Prove that these Bessel functions are solutions of the differential equation

    \[ x^2 y'' + xy' + (x^2 - n^2) y = 0 \]

when n = 0 and n = 1, respectively.


Proof. In the previous exercise (linked above) we proved the following

    \[ J'_0(x) = -J_1(x), \qquad \text{and} \qquad xJ_0(x) = \left( x J_1(x) \right)'. \]

For the case n = 0 we have the differential equation

    \[ x^2 y'' + xy' + x^2 y = 0. \]

Plugging in y = J_0(x) we then have

    \begin{align*}  x^2 y'' + xy' + x^2y &= x^2 J_0''(x) + xJ_0'(x) + x^2 J_0(x) \\[9pt]  &= x^2 \left( -J_1'(x) \right) + x \left(-J_1(x)\right) + x^2 J_0(x) \\[9pt]  &= -x \left( xJ_1'(x) \right)  - x J_1(x) + x^2 J_0(x) \\[9pt]  &= -x \left( \left(xJ_1(x) \right)' - J_1(x) \right) - x J_1(x) + x^2 J_0(x) \\[9pt]  &= -x \left( xJ_0(x) - J_1(x)  \right) - xJ_1(x) + x^2 J_0(x) \\[9pt]  &= -x^2 J_0(x) + xJ_1(x) - xJ_1(x) + x^2 J_0(x) \\[9pt]  &= 0. \end{align*}

So, J_0(x) is indeed a solution in the case n =0.

Now, from the previous exercise we have the relations

    \[ J_0'(x) = -J_1(x), \qquad xJ_0(x) = xJ_1'(x) + J_1(x). \]

Starting with the n = 0 case we differentiate,

    \begin{align*}   && x^2 J_0''(x) + xJ_0'(x) + x^2 J_0(x) &= 0 \\[9pt]  \implies && x^2 J_0'''(x) + 2x J_0''(x) + xJ_0''(x) + J_0'(x) + x^2 J_0'(x) + 2x J_0(x) &= 0 \\[9pt]  \implies && x^2 J_0'''(x) + 3x J_0''(x) + (1+x^2)J_0'(x) + 2x J_0(x) &= 0. \end{align*}

Using the relations above from the previous problem, we substitute

    \begin{align*}  && x^2 J_0'''(x) + 3x J_0''(x) + (1+x^2)J_0'(x) + 2x J_0(x) &= 0 \\[9pt]  \implies && -x^2 J_1''(x) -3x J_1'(x) - (1+x^2) J_1(x) + 2 \left( xJ_0(x) \right) &= 0 \\[9pt]  \implies && -x^2 J_1''(x) - 3x J_1'(x) - (1+x^2) J_1(x) + 2 \left( xJ_1'(x) + J_1(x) \right) &= 0 \\[9pt]  \implies && -x^2 J_1''(x) - 3x J_1'(x) - J_1 (x) - x^2 J_1(x) + 2x J_1'(x) + 2 J_1(x) &= 0 \\[9pt]  \implies && -x^2 J_1''(x) - x J_1'(x) - x^2 J_1(x) + J_1(x) &= 0 \\[9pt]  \implies && x^2 J_1''(x) + x J_1'(x) + x^2 J_1(x) - J_1(x) &= 0 \\[9pt]  \implies && x^2 J_1''(x) + x J_1'(x) + (x^2 - 1) J_1(x) &= 0. \end{align*}

Hence, J_1(x) is indeed a solution of the differentiation equation

    \[ x^2 y'' + xy' + (x^2 - 1)y = 0. \qquad \blacksquare \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):