Home » Blog » Determine the interval of convergence of a given power series and show that it satisfies a differential equation

Determine the interval of convergence of a given power series and show that it satisfies a differential equation

Consider the function f(x) defined by the power series

    \[ f(x) = x + \sum_{n=0}^{\infty} \frac{(3x)^{2n+1}}{(2n+1)!}. \]

Determine the interval of convergence for the power series and show that f(x) satisfies the differential equation

    \[ y'' = 9 (y-x). \]


First, we use the ratio test to determine the interval of convergence,

    \begin{align*}  \lim_{n \to \infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to \infty} \left( \frac{(3x)^{2n+3}}{(2n+3)!} \right) \left( \frac{(2n+1)!}{(3x)^{2n+1}} \right) \\[9pt]  &= \lim_{n \to \infty} \frac{9x^2}{(2n+2)(2n+3)} \\[9pt]  &= 0. \end{align*}

Hence, the series converges for all x. Then, to show that it satisfies the given differential equation we take the first two derivatives,

    \begin{align*}  && f(x) &= x + \sum_{n=0}^{\infty} \frac{(3x)^{2n+1}}{(2n+1)!} \\[9pt]  \implies && f'(x) &= 1 + \sum_{n=0}^{\infty} \frac{3(2n+1)(3x)^{2n}}{(2n+1)!} \\[9pt]  &&&= 1 + 3\sum_{n=0}^{\infty} \frac{(3x)^{2n}}{(2n)!} \\[9pt]  \implies && f''(x) &= 3\sum_{n=1}^{\infty} \frac{3(2n)(3x)^{2n-1}}{(2n)!} \\[9pt]  &&&= 9\sum_{n=1}^{\infty} \frac{(3x)^{2n-1}}{(2n-1)!}. \end{align*}

Then we have

    \begin{align*}  9(y-x) &= 9 \left( -x + x + \sum_{n=0}^{\infty} \frac{(3x)^{2n+1}}{(2n+1)!} \right) \\[9pt]  &= 9 \sum_{n=0}^{\infty} \frac{(3x)^{2n+1}}{(2n+1)!} \\[9pt]  &= 9 \sum_{n=1}^{\infty} \frac{(3x)^{2(n-1)+1}}{(2(n-1)+1)!} \\[9pt]  &= 9 \sum_{n=1}^{\infty} \frac{(3x)^{2n-1}}{(2n-1)!} \\[9pt]  &= y''.  \end{align*}

Therefore, f(x) indeed is a solution of the given differential equation.

Now, to find the sum we first need to get the general form of the solutions for the differential equation

    \[ y'' = 9(y-x) \quad \implies \quad y'' - 9y = -9x. \]

First, we find the general form of the solutions of the homogeneous equation

    \[ y'' - 9y = 0. \]

In this case we have an equation of the form y'' + ay' + by = 0 where a = 0 and b= -9. From this we can compute d = a^2 - 4b = 36 and k = \frac{1}{2} \sqrt{d} = 3. Therefore, the general form of the solutions is

    \[ y = e^{-\frac{ax}{2}} \left( c_1 e^{kx} + c_2 e^{-kx} \right) = c_1 e^{3x} + c_2 e^{-3x}. \]

Then, we can find a particular solution y_1 of the given equation by inspection since

    \[ y'' - 9y = -9x \quad \implies \quad y_1 = x \]

is a solution. Therefore, the general solution to the given inhomogeneous equation is

    \[ y = c_1 e^{3x} + c_2 e^{-3x} + x. \]

Now, in the particular case we also have the initial condition f(0) = 0 and so we have

    \[ f(0) = c_1 + c_2 = 0. \]

Furthermore, since f(x) is an odd function we must have

    \[ f(x) = -f(-x) \quad \implies \quad c_1 - c_2 = 1. \]

Therefore, we conclude c_1 =\frac{1}{2} and c_2 = -\frac{1}{2}. And so,

    \[ f(x) = \frac{1}{2} e^{3x} - \frac{1}{2}e^{-3x} + x = x + \sinh (3x). \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):