Home » Blog » Determine the coefficients in the Taylor series of (2 + x2)5/2

Determine the coefficients in the Taylor series of (2 + x2)5/2

Consider the function f(x) = (2+x^2)^{\frac{5}{2}}. Determine the first five coefficients (a_0, a_1, \ldots, a_4) in the Taylor series expansion of f(x) at x = 0.


First, we take some derivatives,

    \begin{align*}  && f(x) &= (2+x^2)^{\frac{5}{2}} \\[9pt]  \implies && f'(x) &= 5x(2+x^2)^{\frac{3}{2}} \\[9pt]  \implies && f''(x) &= 15x^2 (2+x^2)^{\frac{1}{2}} + 5 (2+x^2)^{\frac{3}{2}} \\[9pt]  \implies && f'''(x) &= \frac{15x^3}{(2+x^2)^{\frac{1}{2}}} + 45x (2+x^2)^{\frac{1}{2}} \\[9pt]  \implies && f^{(4)} (x) &= -\frac{15x^4}{(2+x^2)^{\frac{3}{2}}} + \frac{90x^2}{(2+x^2)^{\frac{1}{2}}} + 45 (2+x^2)^{\frac{1}{2}}. \end{align*}

Then, since the coefficients in the Taylor series at x = 0 are of the form a_n = \frac{f^{(n)}(0)}{n!} we can compute as follows:

    \begin{align*}  a_0 &= \frac{f(0)}{0!} = 2^{\frac{5}{2}} = 4 \sqrt{2} \\[9pt]  a_1 &= \frac{f'(0)}{1!} = \frac{0}{1} = 0 \\[9pt]  a_2 &= \frac{f''(0)}{2!} = \frac{5 \cdot 2^{\frac{3}{2}}}{2} = 5 \sqrt{2} \\[9pt]  a_3 &= \frac{f'''(0)}{6} = 0 \\[9pt]  a_4 &= \frac{f^{(4)}(0)}{4!} = \frac{45 \sqrt{2}}{24} = \frac{15}{8} \sqrt{2}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):