Home » Blog » Test the improper integral ∫ x / (x4 + 1)1/2 for convergence

Test the improper integral ∫ x / (x4 + 1)1/2 for convergence

Test the following improper integral for convergence:

    \[ \int_0^{\infty} \frac{x}{\sqrt{x^4+1}} \, dx. \]


This integral diverges.

Proof. By example 1 (page 417) of Apostol, we know the integral \int_1^{\infty} \frac{1}{x} \, dx diverges. We then apply the limit comparison test (Theorem 10.25 on page 418),

    \begin{align*}  \lim_{x \to +\infty} \frac{f(x)}{g(x)} &= \lim_{x \to +\infty} \frac{\frac{x}{\sqrt{x^4+1}}}{\frac{1}{x}} \\[9pt]  &= \lim_{x \to +\infty} \frac{x^2}{\sqrt{x^4+1}} \\[9pt]  &= \lim_{x \to +\infty} \frac{1}{\sqrt{1+\frac{1}{x^4}}} \\[9pt]  &= 1. \end{align*}

Thus, by the limit comparison test, we have established the divergence of

    \[ \int_0^{\infty} \frac{x}{\sqrt{x^4+1}} \, dx. \qquad \blacksquare \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):