Home » Blog » Test the improper integral ∫ log x / (1-x) for convergence

Test the improper integral ∫ log x / (1-x) for convergence

Test the following improper integral for convergence:

    \[ \int_{0^+}^{1^-} \frac{\log x}{1-x} \, dx. \]


The integral converges.

Proof. First, we write

    \[ \int_{0^+}^{1^-1} \frac{\log x}{1-x} \,dx = \int_{0^+}^{\frac{1}{2}} \frac{\log x}{1-x} \, dx  + \int_{\frac{1}{2}}^{1^-} \frac{\log x}{1-x} \, dx. \]

For the first integral we know for all x \in \left( 0 , \frac{1}{2} \right) we have \frac{1}{2} \leq (1-x) < 1; hence,

    \[ \frac{\log x}{1-x} < 2 \log x \qquad \text{for all } x \in \left( 0, \frac{1}{2} \right). \]

Then, the integral

    \begin{align*}  2 \int_{0^+}^{\frac{1}{2}} \log x \, dx &= 2 \cdot \lim_{a \to 0^+} \int_a^{\frac{1}{2}} \log x \, dx \\[9pt]  &= 2 \cdot \lim_{a \to 0^+} \left( x \log x - x \right)\Bigr \rvert_a^{\frac{1}{2}} \\[9pt]  &= 2 \cdot \lim_{a \to 0^+} \left( \frac{1}{2} \log \frac{1}{2} - \frac{1}{2} - a \log a + a \right) \\[9pt]  &= \log \frac{1}{2} - 1 \\[9pt]  &= - \log 2 - 1. \end{align*}

(We know \lim_{a \to 0} x \log x = 0 by L’Hopital’s, writing x \log x = \frac{\log x}{1/x} or by Example 2 on page 302 of Apostol.) Hence,

    \[ \int_{0^+}^{\frac{1}{2}} \frac{\log x}{1-x} \, dx \]

converges by the comparison theorem (Theorem 10.24 on page 418 of Apostol).

For the second integral, we use the expansion of \log x about x = 1,

    \[ \log x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \cdots. \]

Then we have

    \begin{align*}  \int_{\frac{1}{2}}^{1^-} \frac{\log x}{1-x} \, dx &= \int_{\frac{1}{2}}^{1^-} \frac{ (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \cdots }{1-x} \, dx \\[9pt]  &= \int_{\frac{1}{2}}^{1^-} \left( -1 + \frac{x-1}{2} - \frac{(x-1)^2}{3} + \cdots \right) \, dx. \end{align*}

But this integral converges since it has no singularities.

Thus, we have established the convergence of

    \[ \int_{0^+}^{1^-} \frac{\log x}{1-x} \, dx. \qquad \blacksquare \]

2 comments

  1. Anonymous says:

    Can we substitute 1-x=t from the very beginning, then use Taylor expansion for log(1-t), divide it by t, integrate and get ourselves Riemann Zeta function with s=2 which converges by comparison test with 1/(n^2+n) telescoping series somewhere in the book?

  2. Artem says:

    In the first part, we cannot really use the comparison theorem directly. In fact, the logarithm from 0 to 1/2 is negative, thus your inequality is in the wrong order. However, if it is multiplied by the minus, we arrive at the similar identity, which can now be used with the comparison theorem.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):