Home » Blog » Show that the limit and derivative cannot be interchanged when fn(x) = (sin (nx)) / n

Show that the limit and derivative cannot be interchanged when fn(x) = (sin (nx)) / n

For each positive integer n and and all real x define

    \[ f_n (x) = \frac{\sin (nx)}{n}, \qquad f(x) = \lim_{n \to \infty} f_n(x). \]

Prove that

    \[ \lim_{n \to \infty} f_n'(0) \neq f'(0). \]


Proof. First, we have

    \[ f_n (x) = \frac{\sin (nx)}{n} \quad \implies \quad f_n'(x) = \cos (nx) \quad \implies \quad f_n'(0) = 1 \]

for all n. Hence,

    \[ \lim_{n \to \infty} f_n'(0) = 1. \]

On the other hand,

    \[ f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\sin (nx)}{n} = 0 \implies f'(0) = 0. \]

Hence,

    \[ \lim_{n \to \infty} f_n'(0) \neq f'(0). \qquad \blacksquare \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):