Home » Blog » Find a value of the constant C so that the given improper integral converges

Find a value of the constant C so that the given improper integral converges

Find the value of C \in \mathbb{R} so that the improper integral

    \[ \int_1^{\infty} \left( \frac{x}{2x^2+2C} - \frac{C}{x+1} \right) \, dx \]

converges, and compute the value of the integral in this case.


First, we compute the value of the constant C,

    \begin{align*}  \int_1^{\infty} \left( \frac{x}{2x^2+2C} - \frac{C}{x+1} \right) \, dx &= \int_1^{\infty} \frac{x^2+x-2C(x^2+C)}{2(x^2+C)(x+1)} \, dx \\[9pt]  &= \int_1^{\infty} \frac{(1-2C)x^2 + x - 2C^2}{2(x^2+C)(x+1)} \, dx. \end{align*}

This integral will diverge by comparison with \int_1^{\infty} \frac{1}{x} \, dx if the coefficient of the x^2 term in the numerator is not equal to zero. Hence, we must have

    \[ 1-2C = 0 \quad \implies \quad C = \frac{1}{2}. \]

Next, we evaluate the integral with C = \frac{1}{2},

    \begin{align*}  \int_1^{\infty} \left( \frac{x}{2x^2+2C} - \frac{C}{x+1} \right) \, dx &= \int_1^{\infty} \left( \frac{x}{2x^2+1} - \frac{1}{2(x+1)} \right) \, dx \\[9pt]  &= \lim_{a \to +\infty} \int_1^a \left( \frac{x}{2x^2+1} - \frac{1}{2(x+1)} \right) \, dx \\[9pt]  &= \lim_{a \to +\infty} \left( \frac{1}{4} \int_1^a \frac{4x}{2x^2+1} \, dx - \frac{1}{2} \int_1^a \frac{1}{x+1} \, dx \right) \\[9pt]  &= \lim_{a \to +\infty} \left( \frac{1}{4} \log(2x^2+1) - \frac{1}{2} \log |x+1| \right) \Bigr \rvert_1^a \\[9pt]  &= \frac{1}{4} \cdot \lim_{a \to +\infty} \left( \log(2a^2+1) - \log 3 - 2 \log (a+1) + 2 \log 2 \right) \\[9pt]  &= \frac{1}{4} \cdot \lim_{a\to +\infty} \left( \log \frac{2a^2+1}{(a+1)^2} + \log \frac{4}{3} \right) \\[9pt]  &= \frac{1}{4} \cdot \log \frac{8}{3}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):