Home » Blog » Find a constant so the given improper integral converges

Find a constant so the given improper integral converges

Find a value for the constant C \in \mathbb{R} so that the improper integral

    \[ \int_2^{\infty} \left( \frac{Cx}{x^2+1} - \frac{1}{2x+1} \right) \, dx \]

converges. Find the value of the integral for this value of C.


First, we compute the value of C,

    \begin{align*}  \int_2^{\infty} \left( \frac{Cx}{x^2+1} - \frac{1}{2x+1} \right) \, dx &= \int_2^{\infty} \left( \frac{Cx(2x+1) - (x^2+1)}{(x^2+1)(2x+1)} \right) \, dx \\[9pt]  &= \int_2^{\infty} \frac{(2C-1)x^2 + Cx - 1}{(2x+1)(x^2+1)} \, dx. \end{align*}

Since this integral will diverge by limit comparison with \int_2^{\infty} \frac{1}{x}\, dx for any nonzero coefficient of the x^2 term in the numerator we must have

    \[ 2C - 1 = 0 \quad \implies \quad C = \frac{1}{2}. \]

Next, we evaluate the integral

    \begin{align*}  \int_2^{\infty} \left( \frac{Cx}{x^2+1} - \frac{1}{2x+1} \right) \, dx &= \int_2^{\infty} \left( \frac{\frac{1}{2}x}{x^2+1} - \frac{1}{2x+1} \right) \, dx \\[9pt]  &= \lim_{a \to +\infty} \left( \frac{1}{2} \int_2^a \frac{x}{x^2+1} \, dx - \int_2^a \frac{1}{2x+1} \, dx \right) \\[9pt]  &= \lim_{a \to +\infty} \left( \frac{1}{4} \log (x^2+1) - \frac{1}{2} \log|2x+1| \right) \Bigr \rvert_2^a \\[9pt]  &= \frac{1}{4} \cdot \lim_{a \to +\infty} \left( \log(a^2+1) - \log 5 - 2 \log (2a+1) + 2 \log 5 \right) \\[9pt]  &= \frac{1}{4} \cdot \lim_{a \to +\infty} \left( \log \frac{a^2+1}{(2a+1)^2} + \log 5 \right) \\[9pt]  &= \frac{1}{4} \cdot \left( \log \frac{1}{4} + \log 5 \right) \\[9pt]  &= \frac{1}{4} \log \frac{5}{4}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):