Home » Blog » Determine the radius of convergence of ∑ zn / 2n

Determine the radius of convergence of ∑ zn / 2n

Determine the radius of convergence r of the power series:

    \[ \sum_{n=0}^{\infty} \frac{z^n}{2^n}. \]

Test for convergence at the boundary points if r is finite.


Let a_n = \frac{z^n}{2^n}. Then we have

    \begin{align*}  \lim_{n \to \infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to \infty} \left( \frac{z^{n+1}}{2^{n+1}} \right) \left( \frac{2^n}{z^n} \right) \\[9pt]  &= \frac{z}{2}. \end{align*}

This implies r = 2. Thus, the series converges for all z such that |z| < 2.
The series converges at none of the boundary points |z| = 2 since

    \[ \lim_{n \to \infty} \frac{z^n}{2^n} \neq 0 \]

if |z| = 2.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):