Home » Blog » Determine the radius of convergence of ∑ (n! zn) / nn

Determine the radius of convergence of ∑ (n! zn) / nn

Determine the radius of convergence r of the power series:

    \[ \sum_{n=1}^{\infty} \frac{n! z^n}{n^n}. \]

Test for convergence at the boundary points if r is finite.


Let a_n = \frac{n! z^n}{n^n}. Then,

    \begin{align*}  \lim_{n \to \infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to \infty} \left( \frac{(n+1)! z^{n+1}}{(n+1)^{n+1}} \right) \left( \frac{n^n}{n! z^n} \right) \\[9pt]  &= \lim_{n \to \infty} \frac{z n^n (n+1)}{(n+1)^{n+1}} \\[9pt]  &= \lim_{n \to \infty} \left( \frac{zn^{n+1}}{(n+1)^{n+1}} + \frac{zn^n}{(n+1)^{n+1}} \right) \\[9pt]  &= \lim_{n \to \infty} \left( \frac{n}{n+1} \cdot \left( \frac{n}{n+1} \right)^n z \right) \\[9pt]  &= 1 \cdot \frac{1}{e} \cdot z \\[9pt]  &= \frac{z}{e}. \end{align*}

Thus, the series converges if \left| \frac{z}{e} \right| < 1 which implies |z| < e or the radius of convergence is r = e. It diverges on the boundary points since the terms do not go to 0.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):