Home » Blog » Determine the radius of convergence of ∑ an2 zn

Determine the radius of convergence of ∑ an2 zn

Determine the radius of convergence r of the power series:

    \[ \sum_{n=0}^{\infty} a^{n^2} z^n, \qquad 0 < a < 1. \]

Test for convergence at the boundary points if r is finite.


Let b_n = \left( a^n z \right)^n. Then,

    \begin{align*}  \lim_{n \to \infty} b_n^{\frac{1}{n}} &= \lim_{n \to \infty} \left( \left( a^n z \right)^n \right)^{\frac{1}{n}} \\[9pt]  &= \lim_{n \to \infty} a^n z \\[9pt]  &= 0 \end{align*}

for all 0 < a < 1 for any z. Therefore, the radius of convergence is r = + \infty.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):