Home » Blog » Determine the radius of convergence of ∑ (-1)n(z+1)n / (n2 + 1)

Determine the radius of convergence of ∑ (-1)n(z+1)n / (n2 + 1)

Determine the radius of convergence r of the power series:

    \[ \sum_{n=0}^{\infty} \frac{(-1)^n (z+1)^n}{n^2 + 1}. \]

Test for convergence at the boundary points if r is finite.


Let a_n = \frac{(z+1)^n}{n^2+1}. Then we have

    \begin{align*}  \lim_{n \to \infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to \infty} \left( \frac{ (z+1)^{n+1}}{(n+1)^2 + 1} \right) \left( \frac{n^2+1}{(z+1)^n} \right) \\[9pt]  &= \lim_{n \to \infty} (z+1) \left( \frac{n^2+1}{n^2+2n+2} \right) \\[9pt]  &= z+1. \end{align*}

Thus, the series converges for z such that |z+1| < 1; hence, r = 1. Furthermore, the series converges on the boundary |z+1| = 1 by comparison with the series \sum \frac{1}{n^2}.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):