Home » Blog » Compute the sum of the series ∑ xn / (n+3)!

Compute the sum of the series ∑ xn / (n+3)!

Find all x \in \mathbb{R} such that the series

    \[ \sum_{n=0}^{\infty} \frac{x^n}{(n+3)!} \]

converges and compute the sum.


First, we apply the ratio test

    \begin{align*} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n \to \infty} \left( \frac{|x|^{n+1}}{(n+4)!} \right) \left( \frac{(n+3)!}{|x|^n} \right)\\[9pt]  &= \lim_{n \to \infty} \frac{|x|}{n+4} \\[9pt]  &= 0 \end{align*}

for all x. Therefore this converges for all x \in \mathbb{R}. Furthermore, we compute the sum, for x \neq 0 (since we’ll want to divide by x in here),

    \begin{align*}  \sum_{n=0}^{\infty} \frac{x^n}{(n+3)!} &= \sum_{n=3}^{\infty} \frac{x^{n-3}}{n!} \\[9pt]  &= \frac{1}{x^3} \sum_{n=3}^{\infty} \frac{x^n}{n!} \\[9pt]  &= \frac{1}{x^3} \left( \sum_{n=0}^{\infty} \frac{x^n}{n!} - 1 - x - \frac{x^2}{2} \right) \\[9pt]  &= \frac{1}{x^3} \left( e^x - 1 - x - \frac{x^2}{2} \right). \end{align*}

If x = 0 then the sum is 0.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):