Home » Blog » Compute the sum of the series ∑ xn / 3n+1

Compute the sum of the series ∑ xn / 3n+1

Find all x \in \mathbb{R} such that the series

    \[ \sum_{n=0}^{\infty} \frac{x^n}{3^{n+1}} \]

converges and compute the sum.


From the geometric series expansion we have,

    \begin{align*}   \sum_{n=0}^{\infty} \frac{x^n}{3^{n+1}} &= \frac{1}{3} \cdot \sum_{n=0}^{\infty} \left( \frac{x}{3} \right)^n \\[9pt]  &= \frac{1}{3} \left( \frac{1}{1-\frac{x}{3}} \right) \\[9pt]  &= \frac{1}{3-x}. \end{align*}

This is valid for |x| < 3.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):