Home » Blog » Compute the sum of the series ∑ (-2)n ((n+2) / (n+1)) xn

Compute the sum of the series ∑ (-2)n ((n+2) / (n+1)) xn

Find all x \in \mathbb{R} such that the series

    \[ \sum_{n=0}^{\infty} (-2)^n \frac{n+2}{n+1} x^n \]

converges and compute the sum.


First, we apply the ratio test,

    \begin{align*}  \lim_{n \to \infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to \infty} \left( \frac{(-2)^{n+1}(n+3)x^{n+1}}{n+2} \right) \left( \frac{n+1}{(-2)^n (n+2) x^n} \right) \\[9pt]  &= \lim_{n \to \infty} \frac{-2x (n+1)(n+3)}{(n+2)^2} \\[9pt]  &= -2x. \end{align*}

Thus, the series converges if |-2x| < 1 which implies |x| < \frac{1}{2}. For the boundary, |x| = \frac{1}{2} we have in the case x = \frac{1}{2},

    \[ \sum_{n=0}^{\infty} (-2)^n \frac{n+2}{n+1} x^n = \sum_{n=0}^{\infty} (-1)^n \frac{n+2}{n+1} \]

which diverges since the terms do not go to 0. Similarly, if x = -\frac{1}{2} we get \sum \frac{n+2}{n+1} which also diverges since the terms do not go to 0. Therefore, the given series converges absolutely on the interval |x| < \frac{1}{2}. Then, to compute the sum for |x| < \frac{1}{2} we have

    \begin{align*}  \sum_{n=0}^{\infty} \frac{(-2x)^n (n+2)}{n+1} &= \sum_{n=0}^{\infty} \frac{(-2x)^n (n+1+1)}{n+1} \\[9pt]  &= \sum_{n=0}^{\infty} \frac{(-2x)^n (n+1)}{n+1} + \sum_{n=0}^{\infty} \frac{(-2x)^n}{n+1} &(\text{Abs. Conv. Series}) \\[9pt]  &= \sum_{n=0}^{\infty} (-2x)^n + \frac{1}{2x} \sum_{n=0}^{\infty} \frac{(-2x)^{n+1}}{n+1} \\[9pt]  &= \frac{1}{1+2x} + \frac{\log (1+2x)}{2x}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):