Home » Blog » Compute the sum of the series ∑ ((-1)n x2n) / n!

Compute the sum of the series ∑ ((-1)n x2n) / n!

Find all x \in \mathbb{R} such that the series

    \[ \sum_{n=0}^{\infty} \frac{(-1)^n x^{3n}}{n!} \]

converges and compute the sum.


By the ratio test we have

    \begin{align*}  \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n \to \infty} \left( \frac{x^{3n+3}}{(n+1)!} \right) \left( \frac{n!}{x^{3n}} \right) \\[9pt]  &= \lim_{n \to \infty} \frac{x^3}{n+1} \\[9pt]  &= 0 \end{align*}

for all x. Thus, the series converges for all x \in \mathbb{R}. Furthermore, we compute the sum from the series expansion of e^x,

    \[ \sum_{n=0}^{\infty} \frac{(-1)(x^3)^n}{n!} = e^{-x^3}. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):