Home » Blog » Compute the sum of the series ∑ (-1)n nxn

Compute the sum of the series ∑ (-1)n nxn

Find all x \in \mathbb{R} such that the series

    \[ \sum_{n=0}^{\infty} (-1)^n nx^n \]

converges and compute the sum.


First, we write

    \[ \sum_{n=0}^{\infty} (-1)^n n x^n = x \cdot \sum_{n=0}^{\infty} (-1)^n nx^{n-1}. \]

Then, from Theorem 11.9 we know we can differentiate term-by-term and we have

    \begin{align*}  x \cdot \sum_{n=0}^{\infty} (-1)^n nx^{n-1} &= x \cdot D_x \left( \sum_{n=0}^{\infty} (-1)^n x^n \right) \\[9pt]  &= x \cdot D_x \left( \sum_{n=0}^{\infty} (-x)^n \right) \\[9pt]  &= x \cdot D_x \left( \frac{1}{1+x} \right) &(|x| < 1)\\[9pt]  &= x \cdot \left( \frac{-1}{(1+x)^2} \right)\\[9pt]  &= \frac{-x}{(1+x)^2}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):